Massive black hole binary systems and the NANOGrav 12.5 yr results

ABSTRACT The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) recently reported evidence for the presence of a common stochastic signal across their array of pulsars. The origin of this signal is still unclear. One possibility is that it is due to a stochastic gravitational-wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society. Letters 2021-03, Vol.502 (1), p.L99-L103
Hauptverfasser: Middleton, H, Sesana, A, Chen, S, Vecchio, A, Del Pozzo, W, Rosado, P A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L103
container_issue 1
container_start_page L99
container_title Monthly notices of the Royal Astronomical Society. Letters
container_volume 502
creator Middleton, H
Sesana, A
Chen, S
Vecchio, A
Del Pozzo, W
Rosado, P A
description ABSTRACT The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) recently reported evidence for the presence of a common stochastic signal across their array of pulsars. The origin of this signal is still unclear. One possibility is that it is due to a stochastic gravitational-wave background (SGWB) in the ∼1–10 nHz frequency region. Taking the NANOGrav observational result at face value, we show that this signal would be fully consistent with an SGWB produced by an unresolved population of in-spiralling massive black hole binaries (MBHBs) predicted by current theoretical models. Considering an astrophysically agnostic model, the MBHB merger rate is loosely constrained. Including additional constraints from galaxy pairing fraction and MBH–bulge scaling relations, we find that the MBHB merger rate is ${1.2\times 10^{-5}}{\rm -}{4.5\times 10^{-4}}\, \mathrm{Mpc}^{-3}\, \mathrm{Gyr}^{-1}$ , the MBHB merger time-scale is $\le 2.7\, \mathrm{Gyr}$, and the norm of the MBH−Mbulge relation is $\ge 1.2\times 10^{8}\, {\rm M}_\odot$ (all quoted at 90 per  cent credible intervals). Regardless of the astrophysical details of MBHB assembly, the NANOGrav result would imply that a sufficiently large population of massive black holes pair up, form binaries and merge within a Hubble time.
doi_str_mv 10.1093/mnrasl/slab008
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnrasl_slab008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnrasl/slab008</oup_id><sourcerecordid>10.1093/mnrasl/slab008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-83f3dfecfe4db08d78877b7afe2de3bfda7f3cadc1f09a9ae5a0e9818a1d75513</originalsourceid><addsrcrecordid>eNqFkDFPwzAUhC0EEqWwMntlSGrHteyMpYIWqbQLzNFL_KwGnKTySyvl3xPUipXpbrg7nT7GHqVIpcjVrGkjUJhRgFIIe8Um0sx1onKlrv98pm_ZHdGXEMpYYyfs-R2I6hPyMkD1zfddGG3dQhw4DdRjQxxax_s98u1iu1tFOHGZpZoPkUekY-jpnt14CIQPF52yz9eXj-U62exWb8vFJqmUVH1ilVfOY-Vx7kphnbHWmNKAx8yhKr0D41UFrpJe5JADahCYW2lBOqO1VFOWnner2BFF9MUh1s34tJCi-CVQnAkUFwJj4elc6I6H_7I_wj9gig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Massive black hole binary systems and the NANOGrav 12.5 yr results</title><source>Oxford Journals Open Access Collection</source><creator>Middleton, H ; Sesana, A ; Chen, S ; Vecchio, A ; Del Pozzo, W ; Rosado, P A</creator><creatorcontrib>Middleton, H ; Sesana, A ; Chen, S ; Vecchio, A ; Del Pozzo, W ; Rosado, P A</creatorcontrib><description>ABSTRACT The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) recently reported evidence for the presence of a common stochastic signal across their array of pulsars. The origin of this signal is still unclear. One possibility is that it is due to a stochastic gravitational-wave background (SGWB) in the ∼1–10 nHz frequency region. Taking the NANOGrav observational result at face value, we show that this signal would be fully consistent with an SGWB produced by an unresolved population of in-spiralling massive black hole binaries (MBHBs) predicted by current theoretical models. Considering an astrophysically agnostic model, the MBHB merger rate is loosely constrained. Including additional constraints from galaxy pairing fraction and MBH–bulge scaling relations, we find that the MBHB merger rate is ${1.2\times 10^{-5}}{\rm -}{4.5\times 10^{-4}}\, \mathrm{Mpc}^{-3}\, \mathrm{Gyr}^{-1}$ , the MBHB merger time-scale is $\le 2.7\, \mathrm{Gyr}$, and the norm of the MBH−Mbulge relation is $\ge 1.2\times 10^{8}\, {\rm M}_\odot$ (all quoted at 90 per  cent credible intervals). Regardless of the astrophysical details of MBHB assembly, the NANOGrav result would imply that a sufficiently large population of massive black holes pair up, form binaries and merge within a Hubble time.</description><identifier>ISSN: 1745-3925</identifier><identifier>EISSN: 1745-3933</identifier><identifier>DOI: 10.1093/mnrasl/slab008</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society. Letters, 2021-03, Vol.502 (1), p.L99-L103</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-83f3dfecfe4db08d78877b7afe2de3bfda7f3cadc1f09a9ae5a0e9818a1d75513</citedby><cites>FETCH-LOGICAL-c313t-83f3dfecfe4db08d78877b7afe2de3bfda7f3cadc1f09a9ae5a0e9818a1d75513</cites><orcidid>0000-0001-5532-3622 ; 0000-0003-3978-2030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnrasl/slab008$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Middleton, H</creatorcontrib><creatorcontrib>Sesana, A</creatorcontrib><creatorcontrib>Chen, S</creatorcontrib><creatorcontrib>Vecchio, A</creatorcontrib><creatorcontrib>Del Pozzo, W</creatorcontrib><creatorcontrib>Rosado, P A</creatorcontrib><title>Massive black hole binary systems and the NANOGrav 12.5 yr results</title><title>Monthly notices of the Royal Astronomical Society. Letters</title><description>ABSTRACT The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) recently reported evidence for the presence of a common stochastic signal across their array of pulsars. The origin of this signal is still unclear. One possibility is that it is due to a stochastic gravitational-wave background (SGWB) in the ∼1–10 nHz frequency region. Taking the NANOGrav observational result at face value, we show that this signal would be fully consistent with an SGWB produced by an unresolved population of in-spiralling massive black hole binaries (MBHBs) predicted by current theoretical models. Considering an astrophysically agnostic model, the MBHB merger rate is loosely constrained. Including additional constraints from galaxy pairing fraction and MBH–bulge scaling relations, we find that the MBHB merger rate is ${1.2\times 10^{-5}}{\rm -}{4.5\times 10^{-4}}\, \mathrm{Mpc}^{-3}\, \mathrm{Gyr}^{-1}$ , the MBHB merger time-scale is $\le 2.7\, \mathrm{Gyr}$, and the norm of the MBH−Mbulge relation is $\ge 1.2\times 10^{8}\, {\rm M}_\odot$ (all quoted at 90 per  cent credible intervals). Regardless of the astrophysical details of MBHB assembly, the NANOGrav result would imply that a sufficiently large population of massive black holes pair up, form binaries and merge within a Hubble time.</description><issn>1745-3925</issn><issn>1745-3933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAUhC0EEqWwMntlSGrHteyMpYIWqbQLzNFL_KwGnKTySyvl3xPUipXpbrg7nT7GHqVIpcjVrGkjUJhRgFIIe8Um0sx1onKlrv98pm_ZHdGXEMpYYyfs-R2I6hPyMkD1zfddGG3dQhw4DdRjQxxax_s98u1iu1tFOHGZpZoPkUekY-jpnt14CIQPF52yz9eXj-U62exWb8vFJqmUVH1ilVfOY-Vx7kphnbHWmNKAx8yhKr0D41UFrpJe5JADahCYW2lBOqO1VFOWnner2BFF9MUh1s34tJCi-CVQnAkUFwJj4elc6I6H_7I_wj9gig</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Middleton, H</creator><creator>Sesana, A</creator><creator>Chen, S</creator><creator>Vecchio, A</creator><creator>Del Pozzo, W</creator><creator>Rosado, P A</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5532-3622</orcidid><orcidid>https://orcid.org/0000-0003-3978-2030</orcidid></search><sort><creationdate>20210301</creationdate><title>Massive black hole binary systems and the NANOGrav 12.5 yr results</title><author>Middleton, H ; Sesana, A ; Chen, S ; Vecchio, A ; Del Pozzo, W ; Rosado, P A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-83f3dfecfe4db08d78877b7afe2de3bfda7f3cadc1f09a9ae5a0e9818a1d75513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Middleton, H</creatorcontrib><creatorcontrib>Sesana, A</creatorcontrib><creatorcontrib>Chen, S</creatorcontrib><creatorcontrib>Vecchio, A</creatorcontrib><creatorcontrib>Del Pozzo, W</creatorcontrib><creatorcontrib>Rosado, P A</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Middleton, H</au><au>Sesana, A</au><au>Chen, S</au><au>Vecchio, A</au><au>Del Pozzo, W</au><au>Rosado, P A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive black hole binary systems and the NANOGrav 12.5 yr results</atitle><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>502</volume><issue>1</issue><spage>L99</spage><epage>L103</epage><pages>L99-L103</pages><issn>1745-3925</issn><eissn>1745-3933</eissn><abstract>ABSTRACT The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) recently reported evidence for the presence of a common stochastic signal across their array of pulsars. The origin of this signal is still unclear. One possibility is that it is due to a stochastic gravitational-wave background (SGWB) in the ∼1–10 nHz frequency region. Taking the NANOGrav observational result at face value, we show that this signal would be fully consistent with an SGWB produced by an unresolved population of in-spiralling massive black hole binaries (MBHBs) predicted by current theoretical models. Considering an astrophysically agnostic model, the MBHB merger rate is loosely constrained. Including additional constraints from galaxy pairing fraction and MBH–bulge scaling relations, we find that the MBHB merger rate is ${1.2\times 10^{-5}}{\rm -}{4.5\times 10^{-4}}\, \mathrm{Mpc}^{-3}\, \mathrm{Gyr}^{-1}$ , the MBHB merger time-scale is $\le 2.7\, \mathrm{Gyr}$, and the norm of the MBH−Mbulge relation is $\ge 1.2\times 10^{8}\, {\rm M}_\odot$ (all quoted at 90 per  cent credible intervals). Regardless of the astrophysical details of MBHB assembly, the NANOGrav result would imply that a sufficiently large population of massive black holes pair up, form binaries and merge within a Hubble time.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnrasl/slab008</doi><orcidid>https://orcid.org/0000-0001-5532-3622</orcidid><orcidid>https://orcid.org/0000-0003-3978-2030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1745-3925
ispartof Monthly notices of the Royal Astronomical Society. Letters, 2021-03, Vol.502 (1), p.L99-L103
issn 1745-3925
1745-3933
language eng
recordid cdi_crossref_primary_10_1093_mnrasl_slab008
source Oxford Journals Open Access Collection
title Massive black hole binary systems and the NANOGrav 12.5 yr results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20black%20hole%20binary%20systems%20and%20the%20NANOGrav%2012.5%20yr%20results&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society.%20Letters&rft.au=Middleton,%20H&rft.date=2021-03-01&rft.volume=502&rft.issue=1&rft.spage=L99&rft.epage=L103&rft.pages=L99-L103&rft.issn=1745-3925&rft.eissn=1745-3933&rft_id=info:doi/10.1093/mnrasl/slab008&rft_dat=%3Coup_TOX%3E10.1093/mnrasl/slab008%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnrasl/slab008&rfr_iscdi=true