Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface

ABSTRACT Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted consid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2019-05, Vol.485 (3), p.3088-3096
Hauptverfasser: Cheng, Bin, Yu, Yang, Baoyin, Hexi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3096
container_issue 3
container_start_page 3088
container_title Monthly notices of the Royal Astronomical Society
container_volume 485
creator Cheng, Bin
Yu, Yang
Baoyin, Hexi
description ABSTRACT Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted considerable attention due to its adaptability to the granular regolith and the low-gravity environment. However, the hopping dynamics related to granular materials remains to be explored, which will contribute not only to future space missions but also to the understanding of the dynamical behaviour of granular systems under low gravity. In this paper, we studied the hopping locomotion of a cuboid lander on the regolith surface of an asteroid. Numerical simulations are performed based on the soft-sphere discrete element method. We systematically explored the effects of the controlled parameter and physical properties of the regolith particles. The results show that the hopping outcomes (velocity, angle, and morphology of the cavity left in the regolith) are strongly dependent on these parameters. The high resistance improves the robustness of granular force networks, therefore the lander hops farther in gravel-like media than less frictional media. When the cohesion between regolith particles is included, the cavity left after the hop becomes a mild indentation, differing from the non-cohesive cases, that give distinct crater-like cavities.
doi_str_mv 10.1093/mnras/stz633
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stz633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stz633</oup_id><sourcerecordid>10.1093/mnras/stz633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-1e7cb547137496090155b004d9335600cf934ce78065927b49dfd302fa2a8e023</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqWw8QO8sRB6tmOnHlHFl1TBAnPkOHZj5MSR7Qzw62kIM9MN793p9BC6JnBHQLJNP0SVNil_C8ZO0IowwQsqhThFKwDGi21FyDm6SOkTAEpGxQrp16k30WnlcXL95FV2YUg4WJw7g3UYcgzemxb3YSYzULgL4-iGA1Ypmxhci70aWhPxkc9b0RyCd7nDaYpWaXOJzqzyyVz9zTX6eHx43z0X-7enl939vtBUsFwQU-mGlxVhVSkFSCCcN8c_W8kYFwDaSlZqU21BcEmrppStbRlQq6jaGqBsjW6XuzqGlKKx9Rhdr-JXTaCeA9W_geol0FG_WfQwjf-bP0rCaY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface</title><source>Oxford Journals Open Access Collection</source><creator>Cheng, Bin ; Yu, Yang ; Baoyin, Hexi</creator><creatorcontrib>Cheng, Bin ; Yu, Yang ; Baoyin, Hexi</creatorcontrib><description>ABSTRACT Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted considerable attention due to its adaptability to the granular regolith and the low-gravity environment. However, the hopping dynamics related to granular materials remains to be explored, which will contribute not only to future space missions but also to the understanding of the dynamical behaviour of granular systems under low gravity. In this paper, we studied the hopping locomotion of a cuboid lander on the regolith surface of an asteroid. Numerical simulations are performed based on the soft-sphere discrete element method. We systematically explored the effects of the controlled parameter and physical properties of the regolith particles. The results show that the hopping outcomes (velocity, angle, and morphology of the cavity left in the regolith) are strongly dependent on these parameters. The high resistance improves the robustness of granular force networks, therefore the lander hops farther in gravel-like media than less frictional media. When the cohesion between regolith particles is included, the cavity left after the hop becomes a mild indentation, differing from the non-cohesive cases, that give distinct crater-like cavities.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stz633</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2019-05, Vol.485 (3), p.3088-3096</ispartof><rights>2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-1e7cb547137496090155b004d9335600cf934ce78065927b49dfd302fa2a8e023</citedby><cites>FETCH-LOGICAL-c263t-1e7cb547137496090155b004d9335600cf934ce78065927b49dfd302fa2a8e023</cites><orcidid>0000-0002-8025-9113 ; 0000-0001-9329-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1601,27911,27912</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stz633$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Baoyin, Hexi</creatorcontrib><title>Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted considerable attention due to its adaptability to the granular regolith and the low-gravity environment. However, the hopping dynamics related to granular materials remains to be explored, which will contribute not only to future space missions but also to the understanding of the dynamical behaviour of granular systems under low gravity. In this paper, we studied the hopping locomotion of a cuboid lander on the regolith surface of an asteroid. Numerical simulations are performed based on the soft-sphere discrete element method. We systematically explored the effects of the controlled parameter and physical properties of the regolith particles. The results show that the hopping outcomes (velocity, angle, and morphology of the cavity left in the regolith) are strongly dependent on these parameters. The high resistance improves the robustness of granular force networks, therefore the lander hops farther in gravel-like media than less frictional media. When the cohesion between regolith particles is included, the cavity left after the hop becomes a mild indentation, differing from the non-cohesive cases, that give distinct crater-like cavities.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqWw8QO8sRB6tmOnHlHFl1TBAnPkOHZj5MSR7Qzw62kIM9MN793p9BC6JnBHQLJNP0SVNil_C8ZO0IowwQsqhThFKwDGi21FyDm6SOkTAEpGxQrp16k30WnlcXL95FV2YUg4WJw7g3UYcgzemxb3YSYzULgL4-iGA1Ypmxhci70aWhPxkc9b0RyCd7nDaYpWaXOJzqzyyVz9zTX6eHx43z0X-7enl939vtBUsFwQU-mGlxVhVSkFSCCcN8c_W8kYFwDaSlZqU21BcEmrppStbRlQq6jaGqBsjW6XuzqGlKKx9Rhdr-JXTaCeA9W_geol0FG_WfQwjf-bP0rCaY4</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Cheng, Bin</creator><creator>Yu, Yang</creator><creator>Baoyin, Hexi</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8025-9113</orcidid><orcidid>https://orcid.org/0000-0001-9329-7015</orcidid></search><sort><creationdate>20190521</creationdate><title>Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface</title><author>Cheng, Bin ; Yu, Yang ; Baoyin, Hexi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-1e7cb547137496090155b004d9335600cf934ce78065927b49dfd302fa2a8e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Baoyin, Hexi</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Bin</au><au>Yu, Yang</au><au>Baoyin, Hexi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2019-05-21</date><risdate>2019</risdate><volume>485</volume><issue>3</issue><spage>3088</spage><epage>3096</epage><pages>3088-3096</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted considerable attention due to its adaptability to the granular regolith and the low-gravity environment. However, the hopping dynamics related to granular materials remains to be explored, which will contribute not only to future space missions but also to the understanding of the dynamical behaviour of granular systems under low gravity. In this paper, we studied the hopping locomotion of a cuboid lander on the regolith surface of an asteroid. Numerical simulations are performed based on the soft-sphere discrete element method. We systematically explored the effects of the controlled parameter and physical properties of the regolith particles. The results show that the hopping outcomes (velocity, angle, and morphology of the cavity left in the regolith) are strongly dependent on these parameters. The high resistance improves the robustness of granular force networks, therefore the lander hops farther in gravel-like media than less frictional media. When the cohesion between regolith particles is included, the cavity left after the hop becomes a mild indentation, differing from the non-cohesive cases, that give distinct crater-like cavities.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stz633</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8025-9113</orcidid><orcidid>https://orcid.org/0000-0001-9329-7015</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2019-05, Vol.485 (3), p.3088-3096
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stz633
source Oxford Journals Open Access Collection
title Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulations%20of%20the%20controlled%20motion%20of%20a%20hopping%20asteroid%20lander%20on%20the%20regolith%20surface&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Cheng,%20Bin&rft.date=2019-05-21&rft.volume=485&rft.issue=3&rft.spage=3088&rft.epage=3096&rft.pages=3088-3096&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stz633&rft_dat=%3Coup_TOX%3E10.1093/mnras/stz633%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stz633&rfr_iscdi=true