Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface
ABSTRACT Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted consid...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2019-05, Vol.485 (3), p.3088-3096 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3096 |
---|---|
container_issue | 3 |
container_start_page | 3088 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 485 |
creator | Cheng, Bin Yu, Yang Baoyin, Hexi |
description | ABSTRACT
Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted considerable attention due to its adaptability to the granular regolith and the low-gravity environment. However, the hopping dynamics related to granular materials remains to be explored, which will contribute not only to future space missions but also to the understanding of the dynamical behaviour of granular systems under low gravity. In this paper, we studied the hopping locomotion of a cuboid lander on the regolith surface of an asteroid. Numerical simulations are performed based on the soft-sphere discrete element method. We systematically explored the effects of the controlled parameter and physical properties of the regolith particles. The results show that the hopping outcomes (velocity, angle, and morphology of the cavity left in the regolith) are strongly dependent on these parameters. The high resistance improves the robustness of granular force networks, therefore the lander hops farther in gravel-like media than less frictional media. When the cohesion between regolith particles is included, the cavity left after the hop becomes a mild indentation, differing from the non-cohesive cases, that give distinct crater-like cavities. |
doi_str_mv | 10.1093/mnras/stz633 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stz633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stz633</oup_id><sourcerecordid>10.1093/mnras/stz633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-1e7cb547137496090155b004d9335600cf934ce78065927b49dfd302fa2a8e023</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqWw8QO8sRB6tmOnHlHFl1TBAnPkOHZj5MSR7Qzw62kIM9MN793p9BC6JnBHQLJNP0SVNil_C8ZO0IowwQsqhThFKwDGi21FyDm6SOkTAEpGxQrp16k30WnlcXL95FV2YUg4WJw7g3UYcgzemxb3YSYzULgL4-iGA1Ypmxhci70aWhPxkc9b0RyCd7nDaYpWaXOJzqzyyVz9zTX6eHx43z0X-7enl939vtBUsFwQU-mGlxVhVSkFSCCcN8c_W8kYFwDaSlZqU21BcEmrppStbRlQq6jaGqBsjW6XuzqGlKKx9Rhdr-JXTaCeA9W_geol0FG_WfQwjf-bP0rCaY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface</title><source>Oxford Journals Open Access Collection</source><creator>Cheng, Bin ; Yu, Yang ; Baoyin, Hexi</creator><creatorcontrib>Cheng, Bin ; Yu, Yang ; Baoyin, Hexi</creatorcontrib><description>ABSTRACT
Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted considerable attention due to its adaptability to the granular regolith and the low-gravity environment. However, the hopping dynamics related to granular materials remains to be explored, which will contribute not only to future space missions but also to the understanding of the dynamical behaviour of granular systems under low gravity. In this paper, we studied the hopping locomotion of a cuboid lander on the regolith surface of an asteroid. Numerical simulations are performed based on the soft-sphere discrete element method. We systematically explored the effects of the controlled parameter and physical properties of the regolith particles. The results show that the hopping outcomes (velocity, angle, and morphology of the cavity left in the regolith) are strongly dependent on these parameters. The high resistance improves the robustness of granular force networks, therefore the lander hops farther in gravel-like media than less frictional media. When the cohesion between regolith particles is included, the cavity left after the hop becomes a mild indentation, differing from the non-cohesive cases, that give distinct crater-like cavities.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stz633</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2019-05, Vol.485 (3), p.3088-3096</ispartof><rights>2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-1e7cb547137496090155b004d9335600cf934ce78065927b49dfd302fa2a8e023</citedby><cites>FETCH-LOGICAL-c263t-1e7cb547137496090155b004d9335600cf934ce78065927b49dfd302fa2a8e023</cites><orcidid>0000-0002-8025-9113 ; 0000-0001-9329-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1601,27911,27912</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stz633$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Baoyin, Hexi</creatorcontrib><title>Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted considerable attention due to its adaptability to the granular regolith and the low-gravity environment. However, the hopping dynamics related to granular materials remains to be explored, which will contribute not only to future space missions but also to the understanding of the dynamical behaviour of granular systems under low gravity. In this paper, we studied the hopping locomotion of a cuboid lander on the regolith surface of an asteroid. Numerical simulations are performed based on the soft-sphere discrete element method. We systematically explored the effects of the controlled parameter and physical properties of the regolith particles. The results show that the hopping outcomes (velocity, angle, and morphology of the cavity left in the regolith) are strongly dependent on these parameters. The high resistance improves the robustness of granular force networks, therefore the lander hops farther in gravel-like media than less frictional media. When the cohesion between regolith particles is included, the cavity left after the hop becomes a mild indentation, differing from the non-cohesive cases, that give distinct crater-like cavities.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqWw8QO8sRB6tmOnHlHFl1TBAnPkOHZj5MSR7Qzw62kIM9MN793p9BC6JnBHQLJNP0SVNil_C8ZO0IowwQsqhThFKwDGi21FyDm6SOkTAEpGxQrp16k30WnlcXL95FV2YUg4WJw7g3UYcgzemxb3YSYzULgL4-iGA1Ypmxhci70aWhPxkc9b0RyCd7nDaYpWaXOJzqzyyVz9zTX6eHx43z0X-7enl939vtBUsFwQU-mGlxVhVSkFSCCcN8c_W8kYFwDaSlZqU21BcEmrppStbRlQq6jaGqBsjW6XuzqGlKKx9Rhdr-JXTaCeA9W_geol0FG_WfQwjf-bP0rCaY4</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>Cheng, Bin</creator><creator>Yu, Yang</creator><creator>Baoyin, Hexi</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8025-9113</orcidid><orcidid>https://orcid.org/0000-0001-9329-7015</orcidid></search><sort><creationdate>20190521</creationdate><title>Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface</title><author>Cheng, Bin ; Yu, Yang ; Baoyin, Hexi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-1e7cb547137496090155b004d9335600cf934ce78065927b49dfd302fa2a8e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Baoyin, Hexi</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Bin</au><au>Yu, Yang</au><au>Baoyin, Hexi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2019-05-21</date><risdate>2019</risdate><volume>485</volume><issue>3</issue><spage>3088</spage><epage>3096</epage><pages>3088-3096</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
Previous missions have revealed that small Solar system bodies are topographically diverse, which raises an immense challenge to a lander that aims to perform scientific measurements at different locations on the surface of the target. In recent years, hopping mechanism has attracted considerable attention due to its adaptability to the granular regolith and the low-gravity environment. However, the hopping dynamics related to granular materials remains to be explored, which will contribute not only to future space missions but also to the understanding of the dynamical behaviour of granular systems under low gravity. In this paper, we studied the hopping locomotion of a cuboid lander on the regolith surface of an asteroid. Numerical simulations are performed based on the soft-sphere discrete element method. We systematically explored the effects of the controlled parameter and physical properties of the regolith particles. The results show that the hopping outcomes (velocity, angle, and morphology of the cavity left in the regolith) are strongly dependent on these parameters. The high resistance improves the robustness of granular force networks, therefore the lander hops farther in gravel-like media than less frictional media. When the cohesion between regolith particles is included, the cavity left after the hop becomes a mild indentation, differing from the non-cohesive cases, that give distinct crater-like cavities.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stz633</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8025-9113</orcidid><orcidid>https://orcid.org/0000-0001-9329-7015</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2019-05, Vol.485 (3), p.3088-3096 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_stz633 |
source | Oxford Journals Open Access Collection |
title | Numerical simulations of the controlled motion of a hopping asteroid lander on the regolith surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulations%20of%20the%20controlled%20motion%20of%20a%20hopping%20asteroid%20lander%20on%20the%20regolith%20surface&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Cheng,%20Bin&rft.date=2019-05-21&rft.volume=485&rft.issue=3&rft.spage=3088&rft.epage=3096&rft.pages=3088-3096&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stz633&rft_dat=%3Coup_TOX%3E10.1093/mnras/stz633%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stz633&rfr_iscdi=true |