Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum

Abstract We present a new power spectrum emulator named EuclidEmulator that estimates the nonlinear correction to the linear dark matter power spectrum depending on the six cosmological parameters ωb, ωm, ns, h, $w$0, and σ8. It is constructed using the uncertainty quantification software UQLab usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2019-04, Vol.484 (4), p.5509-5529
Hauptverfasser: Knabenhans, Mischa, Stadel, Joachim, Marelli, Stefano, Potter, Doug, Teyssier, Romain, Legrand, Laurent, Schneider, Aurel, Sudret, Bruno, Blot, Linda, Awan, Saeeda, Burigana, Carlo, Carvalho, Carla Sofia, Kurki-Suonio, Hannu, Sirri, Gabriele
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5529
container_issue 4
container_start_page 5509
container_title Monthly notices of the Royal Astronomical Society
container_volume 484
creator Knabenhans, Mischa
Stadel, Joachim
Marelli, Stefano
Potter, Doug
Teyssier, Romain
Legrand, Laurent
Schneider, Aurel
Sudret, Bruno
Blot, Linda
Awan, Saeeda
Burigana, Carlo
Carvalho, Carla Sofia
Kurki-Suonio, Hannu
Sirri, Gabriele
description Abstract We present a new power spectrum emulator named EuclidEmulator that estimates the nonlinear correction to the linear dark matter power spectrum depending on the six cosmological parameters ωb, ωm, ns, h, $w$0, and σ8. It is constructed using the uncertainty quantification software UQLab using a spectral decomposition method called polynomial chaos expansion. All steps in its construction have been tested and optimized: the large high-resolution N-body simulations carried out with PKDGRAV3 were validated using a simulation from the Euclid Flagship campaign and demonstrated to have converged up to wavenumbers $k\approx 5\, h\, {\rm Mpc}^{-1}$ for redshifts $z$ ≤ 5. The emulator is based on 100 input cosmologies simulated in boxes of (1250 Mpc/h)3 using 20483 particles. We show that by creating mock emulators it is possible to successfully predict and optimize the performance of the final emulator prior to performing any N-body simulations. The absolute accuracy of the final nonlinear power spectrum is as good as one obtained with N-body simulations, conservatively, ${\sim } 1$ per cent for $k\lesssim 1\, h\, {\rm Mpc}^{-1}$ and $z$ ≲ 1. This enables efficient forward modelling in the nonlinear regime, allowing for estimation of cosmological parameters using Markov Chain Monte Carlo methods. EuclidEmulator has been compared to HALOFIT, CosmicEmu, and NGenHalofit, and shown to be more accurate than these other approaches. This work paves a new way for optimal construction of future emulators that also consider other cosmological observables, use higher resolution input simulations, and investigate higher dimensional cosmological parameter spaces.
doi_str_mv 10.1093/mnras/stz197
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stz197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stz197</oup_id><sourcerecordid>10.1093/mnras/stz197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-dc7a729d50cc634e83518be5bd4d2f3860beb42d6ab21ba01c530998c0cae7b03</originalsourceid><addsrcrecordid>eNp9kL1OwzAYRS0EEqWw8QDeWEhrx4mTsKGqQKVKLGWO_PMFghLbsh2hMvUdeEOehNAws9w73KM7HISuKVlQUrFlb7wIyxA_aVWcoBllPE_SivNTNCOE5UlZUHqOLkJ4J4RkLOUzdFgPqms1dh6c8CK21tzhzWaBd2-Ap23dD52I1uPvwxcWOFrbjYGV7d0QAccRVDb0trOve6zBgdFgFGDbHDdjTdcaEB73Ikbw2NmPMYMDFf3QX6KzRnQBrv56jl4e1rvVU7J9ftys7reJYgWNiVaFKNJK50QpzjIoWU5LCbnUmU4bVnIiQWap5kKmVApCVc5IVZWKKAGFJGyObqdf5W0IHpra-bYXfl9TUv_aq4_26sneiN9MuB3c_-QPjDt2RA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum</title><source>Oxford Journals Open Access Collection</source><creator>Knabenhans, Mischa ; Stadel, Joachim ; Marelli, Stefano ; Potter, Doug ; Teyssier, Romain ; Legrand, Laurent ; Schneider, Aurel ; Sudret, Bruno ; Blot, Linda ; Awan, Saeeda ; Burigana, Carlo ; Carvalho, Carla Sofia ; Kurki-Suonio, Hannu ; Sirri, Gabriele</creator><creatorcontrib>Knabenhans, Mischa ; Stadel, Joachim ; Marelli, Stefano ; Potter, Doug ; Teyssier, Romain ; Legrand, Laurent ; Schneider, Aurel ; Sudret, Bruno ; Blot, Linda ; Awan, Saeeda ; Burigana, Carlo ; Carvalho, Carla Sofia ; Kurki-Suonio, Hannu ; Sirri, Gabriele ; Euclid Collaboration</creatorcontrib><description>Abstract We present a new power spectrum emulator named EuclidEmulator that estimates the nonlinear correction to the linear dark matter power spectrum depending on the six cosmological parameters ωb, ωm, ns, h, $w$0, and σ8. It is constructed using the uncertainty quantification software UQLab using a spectral decomposition method called polynomial chaos expansion. All steps in its construction have been tested and optimized: the large high-resolution N-body simulations carried out with PKDGRAV3 were validated using a simulation from the Euclid Flagship campaign and demonstrated to have converged up to wavenumbers $k\approx 5\, h\, {\rm Mpc}^{-1}$ for redshifts $z$ ≤ 5. The emulator is based on 100 input cosmologies simulated in boxes of (1250 Mpc/h)3 using 20483 particles. We show that by creating mock emulators it is possible to successfully predict and optimize the performance of the final emulator prior to performing any N-body simulations. The absolute accuracy of the final nonlinear power spectrum is as good as one obtained with N-body simulations, conservatively, ${\sim } 1$ per cent for $k\lesssim 1\, h\, {\rm Mpc}^{-1}$ and $z$ ≲ 1. This enables efficient forward modelling in the nonlinear regime, allowing for estimation of cosmological parameters using Markov Chain Monte Carlo methods. EuclidEmulator has been compared to HALOFIT, CosmicEmu, and NGenHalofit, and shown to be more accurate than these other approaches. This work paves a new way for optimal construction of future emulators that also consider other cosmological observables, use higher resolution input simulations, and investigate higher dimensional cosmological parameter spaces.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stz197</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2019-04, Vol.484 (4), p.5509-5529</ispartof><rights>2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-dc7a729d50cc634e83518be5bd4d2f3860beb42d6ab21ba01c530998c0cae7b03</citedby><cites>FETCH-LOGICAL-c371t-dc7a729d50cc634e83518be5bd4d2f3860beb42d6ab21ba01c530998c0cae7b03</cites><orcidid>0000-0001-7689-0933 ; 0000-0002-9268-9014 ; 0000-0002-9501-7395 ; 0000-0002-9622-7167 ; 0000-0001-7565-8622 ; 0000-0002-0757-5195 ; 0000-0002-2886-9838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stz197$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Knabenhans, Mischa</creatorcontrib><creatorcontrib>Stadel, Joachim</creatorcontrib><creatorcontrib>Marelli, Stefano</creatorcontrib><creatorcontrib>Potter, Doug</creatorcontrib><creatorcontrib>Teyssier, Romain</creatorcontrib><creatorcontrib>Legrand, Laurent</creatorcontrib><creatorcontrib>Schneider, Aurel</creatorcontrib><creatorcontrib>Sudret, Bruno</creatorcontrib><creatorcontrib>Blot, Linda</creatorcontrib><creatorcontrib>Awan, Saeeda</creatorcontrib><creatorcontrib>Burigana, Carlo</creatorcontrib><creatorcontrib>Carvalho, Carla Sofia</creatorcontrib><creatorcontrib>Kurki-Suonio, Hannu</creatorcontrib><creatorcontrib>Sirri, Gabriele</creatorcontrib><creatorcontrib>Euclid Collaboration</creatorcontrib><title>Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract We present a new power spectrum emulator named EuclidEmulator that estimates the nonlinear correction to the linear dark matter power spectrum depending on the six cosmological parameters ωb, ωm, ns, h, $w$0, and σ8. It is constructed using the uncertainty quantification software UQLab using a spectral decomposition method called polynomial chaos expansion. All steps in its construction have been tested and optimized: the large high-resolution N-body simulations carried out with PKDGRAV3 were validated using a simulation from the Euclid Flagship campaign and demonstrated to have converged up to wavenumbers $k\approx 5\, h\, {\rm Mpc}^{-1}$ for redshifts $z$ ≤ 5. The emulator is based on 100 input cosmologies simulated in boxes of (1250 Mpc/h)3 using 20483 particles. We show that by creating mock emulators it is possible to successfully predict and optimize the performance of the final emulator prior to performing any N-body simulations. The absolute accuracy of the final nonlinear power spectrum is as good as one obtained with N-body simulations, conservatively, ${\sim } 1$ per cent for $k\lesssim 1\, h\, {\rm Mpc}^{-1}$ and $z$ ≲ 1. This enables efficient forward modelling in the nonlinear regime, allowing for estimation of cosmological parameters using Markov Chain Monte Carlo methods. EuclidEmulator has been compared to HALOFIT, CosmicEmu, and NGenHalofit, and shown to be more accurate than these other approaches. This work paves a new way for optimal construction of future emulators that also consider other cosmological observables, use higher resolution input simulations, and investigate higher dimensional cosmological parameter spaces.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAYRS0EEqWw8QDeWEhrx4mTsKGqQKVKLGWO_PMFghLbsh2hMvUdeEOehNAws9w73KM7HISuKVlQUrFlb7wIyxA_aVWcoBllPE_SivNTNCOE5UlZUHqOLkJ4J4RkLOUzdFgPqms1dh6c8CK21tzhzWaBd2-Ap23dD52I1uPvwxcWOFrbjYGV7d0QAccRVDb0trOve6zBgdFgFGDbHDdjTdcaEB73Ikbw2NmPMYMDFf3QX6KzRnQBrv56jl4e1rvVU7J9ftys7reJYgWNiVaFKNJK50QpzjIoWU5LCbnUmU4bVnIiQWap5kKmVApCVc5IVZWKKAGFJGyObqdf5W0IHpra-bYXfl9TUv_aq4_26sneiN9MuB3c_-QPjDt2RA</recordid><startdate>20190421</startdate><enddate>20190421</enddate><creator>Knabenhans, Mischa</creator><creator>Stadel, Joachim</creator><creator>Marelli, Stefano</creator><creator>Potter, Doug</creator><creator>Teyssier, Romain</creator><creator>Legrand, Laurent</creator><creator>Schneider, Aurel</creator><creator>Sudret, Bruno</creator><creator>Blot, Linda</creator><creator>Awan, Saeeda</creator><creator>Burigana, Carlo</creator><creator>Carvalho, Carla Sofia</creator><creator>Kurki-Suonio, Hannu</creator><creator>Sirri, Gabriele</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7689-0933</orcidid><orcidid>https://orcid.org/0000-0002-9268-9014</orcidid><orcidid>https://orcid.org/0000-0002-9501-7395</orcidid><orcidid>https://orcid.org/0000-0002-9622-7167</orcidid><orcidid>https://orcid.org/0000-0001-7565-8622</orcidid><orcidid>https://orcid.org/0000-0002-0757-5195</orcidid><orcidid>https://orcid.org/0000-0002-2886-9838</orcidid></search><sort><creationdate>20190421</creationdate><title>Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum</title><author>Knabenhans, Mischa ; Stadel, Joachim ; Marelli, Stefano ; Potter, Doug ; Teyssier, Romain ; Legrand, Laurent ; Schneider, Aurel ; Sudret, Bruno ; Blot, Linda ; Awan, Saeeda ; Burigana, Carlo ; Carvalho, Carla Sofia ; Kurki-Suonio, Hannu ; Sirri, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-dc7a729d50cc634e83518be5bd4d2f3860beb42d6ab21ba01c530998c0cae7b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knabenhans, Mischa</creatorcontrib><creatorcontrib>Stadel, Joachim</creatorcontrib><creatorcontrib>Marelli, Stefano</creatorcontrib><creatorcontrib>Potter, Doug</creatorcontrib><creatorcontrib>Teyssier, Romain</creatorcontrib><creatorcontrib>Legrand, Laurent</creatorcontrib><creatorcontrib>Schneider, Aurel</creatorcontrib><creatorcontrib>Sudret, Bruno</creatorcontrib><creatorcontrib>Blot, Linda</creatorcontrib><creatorcontrib>Awan, Saeeda</creatorcontrib><creatorcontrib>Burigana, Carlo</creatorcontrib><creatorcontrib>Carvalho, Carla Sofia</creatorcontrib><creatorcontrib>Kurki-Suonio, Hannu</creatorcontrib><creatorcontrib>Sirri, Gabriele</creatorcontrib><creatorcontrib>Euclid Collaboration</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knabenhans, Mischa</au><au>Stadel, Joachim</au><au>Marelli, Stefano</au><au>Potter, Doug</au><au>Teyssier, Romain</au><au>Legrand, Laurent</au><au>Schneider, Aurel</au><au>Sudret, Bruno</au><au>Blot, Linda</au><au>Awan, Saeeda</au><au>Burigana, Carlo</au><au>Carvalho, Carla Sofia</au><au>Kurki-Suonio, Hannu</au><au>Sirri, Gabriele</au><aucorp>Euclid Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2019-04-21</date><risdate>2019</risdate><volume>484</volume><issue>4</issue><spage>5509</spage><epage>5529</epage><pages>5509-5529</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract We present a new power spectrum emulator named EuclidEmulator that estimates the nonlinear correction to the linear dark matter power spectrum depending on the six cosmological parameters ωb, ωm, ns, h, $w$0, and σ8. It is constructed using the uncertainty quantification software UQLab using a spectral decomposition method called polynomial chaos expansion. All steps in its construction have been tested and optimized: the large high-resolution N-body simulations carried out with PKDGRAV3 were validated using a simulation from the Euclid Flagship campaign and demonstrated to have converged up to wavenumbers $k\approx 5\, h\, {\rm Mpc}^{-1}$ for redshifts $z$ ≤ 5. The emulator is based on 100 input cosmologies simulated in boxes of (1250 Mpc/h)3 using 20483 particles. We show that by creating mock emulators it is possible to successfully predict and optimize the performance of the final emulator prior to performing any N-body simulations. The absolute accuracy of the final nonlinear power spectrum is as good as one obtained with N-body simulations, conservatively, ${\sim } 1$ per cent for $k\lesssim 1\, h\, {\rm Mpc}^{-1}$ and $z$ ≲ 1. This enables efficient forward modelling in the nonlinear regime, allowing for estimation of cosmological parameters using Markov Chain Monte Carlo methods. EuclidEmulator has been compared to HALOFIT, CosmicEmu, and NGenHalofit, and shown to be more accurate than these other approaches. This work paves a new way for optimal construction of future emulators that also consider other cosmological observables, use higher resolution input simulations, and investigate higher dimensional cosmological parameter spaces.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stz197</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7689-0933</orcidid><orcidid>https://orcid.org/0000-0002-9268-9014</orcidid><orcidid>https://orcid.org/0000-0002-9501-7395</orcidid><orcidid>https://orcid.org/0000-0002-9622-7167</orcidid><orcidid>https://orcid.org/0000-0001-7565-8622</orcidid><orcidid>https://orcid.org/0000-0002-0757-5195</orcidid><orcidid>https://orcid.org/0000-0002-2886-9838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2019-04, Vol.484 (4), p.5509-5529
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stz197
source Oxford Journals Open Access Collection
title Euclid preparation: II. The EuclidEmulator – a tool to compute the cosmology dependence of the nonlinear matter power spectrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Euclid%20preparation:%20II.%20The%20EuclidEmulator%20%E2%80%93%20a%20tool%20to%20compute%20the%20cosmology%20dependence%20of%20the%20nonlinear%20matter%20power%20spectrum&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Knabenhans,%20Mischa&rft.aucorp=Euclid%20Collaboration&rft.date=2019-04-21&rft.volume=484&rft.issue=4&rft.spage=5509&rft.epage=5529&rft.pages=5509-5529&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stz197&rft_dat=%3Coup_TOX%3E10.1093/mnras/stz197%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stz197&rfr_iscdi=true