Automated distant galaxy merger classifications from Space Telescope images using the Illustris simulation

ABSTRACT We present image-based evolution of galaxy mergers from the Illustris cosmological simulation at 12 time-steps over 0.5 < z < 5. To do so, we created approximately one million synthetic deep Hubble Space Telescope and James Webb Space Telescope images and measured common morphological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2019-07, Vol.486 (3), p.3702-3720
Hauptverfasser: Snyder, Gregory F, Rodriguez-Gomez, Vicente, Lotz, Jennifer M, Torrey, Paul, Quirk, Amanda C N, Hernquist, Lars, Vogelsberger, Mark, Freeman, Peter E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3720
container_issue 3
container_start_page 3702
container_title Monthly notices of the Royal Astronomical Society
container_volume 486
creator Snyder, Gregory F
Rodriguez-Gomez, Vicente
Lotz, Jennifer M
Torrey, Paul
Quirk, Amanda C N
Hernquist, Lars
Vogelsberger, Mark
Freeman, Peter E
description ABSTRACT We present image-based evolution of galaxy mergers from the Illustris cosmological simulation at 12 time-steps over 0.5 < z < 5. To do so, we created approximately one million synthetic deep Hubble Space Telescope and James Webb Space Telescope images and measured common morphological indicators. Using the merger tree, we assess methods to observationally select mergers with stellar mass ratios as low as 10:1 completing within ±250 Myr of the mock observation. We confirm that common one- or two-dimensional statistics select mergers so defined with low purity and completeness, leading to high statistical errors. As an alternative, we train redshift-dependent random forests (RFs) based on 5–10 inputs. Cross-validation shows the RFs yield superior, yet still imperfect, measurements of the late-stage merger fraction, and they select more mergers in bulge-dominated galaxies. When applied to CANDELS morphology catalogues, the RFs estimate a merger rate increasing to at least z = 3, albeit two times higher than expected by theory. This suggests possible mismatches in the feedback-determined morphologies, but affirms the basic understanding of galaxy merger evolution. The RFs achieve completeness of roughly $70{{\ \rm per\ cent}}$ at 0.5 < z < 3, and purity increasing from $10{{\ \rm per\ cent}}$ at z = 0.5–60 per cent at z = 3. At earlier times, the training sets are insufficient, motivating larger simulations and smaller time sampling. By blending large surveys and large simulations, such machine learning techniques offer a promising opportunity to teach us the strengths and weaknesses of inferences about galaxy evolution.
doi_str_mv 10.1093/mnras/stz1059
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stz1059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stz1059</oup_id><sourcerecordid>10.1093/mnras/stz1059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-7422d9eccd2d814635b290e00710308d4b6b3ab511b344abd8472fc1778a112f3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqUwsntkCfW1nTgZq4pHpUoMlDlybCe4yku-jkT59fS1M53lO0dHHyGPwJ6BFWLR9UHjAuMvsLS4IjMQWZrwIsuuyYwxkSa5Argld4g7xpgUPJuR3XKKQ6ejs9R6jLqPtNGt_tnTzoXGBWpajehrb3T0Q4-0DkNHP0dtHN261qEZRkd9pxuHdELfNzR-O7pu2wlj8EjRd1N76t6Tm1q36B4uOSdfry_b1Xuy-Xhbr5abxAiVxkRJzm3hjLHc5iAzkVa8YI4xBUyw3Moqq4SuUoBKSKkrm0vFawNK5RqA12JOkvOuCQNicHU5hsPBsC-BlUdR5UlUeRF14J_O_DCN_6B_urNuEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated distant galaxy merger classifications from Space Telescope images using the Illustris simulation</title><source>Oxford Journals Open Access Collection</source><creator>Snyder, Gregory F ; Rodriguez-Gomez, Vicente ; Lotz, Jennifer M ; Torrey, Paul ; Quirk, Amanda C N ; Hernquist, Lars ; Vogelsberger, Mark ; Freeman, Peter E</creator><creatorcontrib>Snyder, Gregory F ; Rodriguez-Gomez, Vicente ; Lotz, Jennifer M ; Torrey, Paul ; Quirk, Amanda C N ; Hernquist, Lars ; Vogelsberger, Mark ; Freeman, Peter E</creatorcontrib><description>ABSTRACT We present image-based evolution of galaxy mergers from the Illustris cosmological simulation at 12 time-steps over 0.5 &lt; z &lt; 5. To do so, we created approximately one million synthetic deep Hubble Space Telescope and James Webb Space Telescope images and measured common morphological indicators. Using the merger tree, we assess methods to observationally select mergers with stellar mass ratios as low as 10:1 completing within ±250 Myr of the mock observation. We confirm that common one- or two-dimensional statistics select mergers so defined with low purity and completeness, leading to high statistical errors. As an alternative, we train redshift-dependent random forests (RFs) based on 5–10 inputs. Cross-validation shows the RFs yield superior, yet still imperfect, measurements of the late-stage merger fraction, and they select more mergers in bulge-dominated galaxies. When applied to CANDELS morphology catalogues, the RFs estimate a merger rate increasing to at least z = 3, albeit two times higher than expected by theory. This suggests possible mismatches in the feedback-determined morphologies, but affirms the basic understanding of galaxy merger evolution. The RFs achieve completeness of roughly $70{{\ \rm per\ cent}}$ at 0.5 &lt; z &lt; 3, and purity increasing from $10{{\ \rm per\ cent}}$ at z = 0.5–60 per cent at z = 3. At earlier times, the training sets are insufficient, motivating larger simulations and smaller time sampling. By blending large surveys and large simulations, such machine learning techniques offer a promising opportunity to teach us the strengths and weaknesses of inferences about galaxy evolution.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stz1059</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2019-07, Vol.486 (3), p.3702-3720</ispartof><rights>2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-7422d9eccd2d814635b290e00710308d4b6b3ab511b344abd8472fc1778a112f3</citedby><cites>FETCH-LOGICAL-c375t-7422d9eccd2d814635b290e00710308d4b6b3ab511b344abd8472fc1778a112f3</cites><orcidid>0000-0002-4226-304X ; 0000-0002-5653-0786 ; 0000-0002-9495-0079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stz1059$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Snyder, Gregory F</creatorcontrib><creatorcontrib>Rodriguez-Gomez, Vicente</creatorcontrib><creatorcontrib>Lotz, Jennifer M</creatorcontrib><creatorcontrib>Torrey, Paul</creatorcontrib><creatorcontrib>Quirk, Amanda C N</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><creatorcontrib>Vogelsberger, Mark</creatorcontrib><creatorcontrib>Freeman, Peter E</creatorcontrib><title>Automated distant galaxy merger classifications from Space Telescope images using the Illustris simulation</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT We present image-based evolution of galaxy mergers from the Illustris cosmological simulation at 12 time-steps over 0.5 &lt; z &lt; 5. To do so, we created approximately one million synthetic deep Hubble Space Telescope and James Webb Space Telescope images and measured common morphological indicators. Using the merger tree, we assess methods to observationally select mergers with stellar mass ratios as low as 10:1 completing within ±250 Myr of the mock observation. We confirm that common one- or two-dimensional statistics select mergers so defined with low purity and completeness, leading to high statistical errors. As an alternative, we train redshift-dependent random forests (RFs) based on 5–10 inputs. Cross-validation shows the RFs yield superior, yet still imperfect, measurements of the late-stage merger fraction, and they select more mergers in bulge-dominated galaxies. When applied to CANDELS morphology catalogues, the RFs estimate a merger rate increasing to at least z = 3, albeit two times higher than expected by theory. This suggests possible mismatches in the feedback-determined morphologies, but affirms the basic understanding of galaxy merger evolution. The RFs achieve completeness of roughly $70{{\ \rm per\ cent}}$ at 0.5 &lt; z &lt; 3, and purity increasing from $10{{\ \rm per\ cent}}$ at z = 0.5–60 per cent at z = 3. At earlier times, the training sets are insufficient, motivating larger simulations and smaller time sampling. By blending large surveys and large simulations, such machine learning techniques offer a promising opportunity to teach us the strengths and weaknesses of inferences about galaxy evolution.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqUwsntkCfW1nTgZq4pHpUoMlDlybCe4yku-jkT59fS1M53lO0dHHyGPwJ6BFWLR9UHjAuMvsLS4IjMQWZrwIsuuyYwxkSa5Argld4g7xpgUPJuR3XKKQ6ejs9R6jLqPtNGt_tnTzoXGBWpajehrb3T0Q4-0DkNHP0dtHN261qEZRkd9pxuHdELfNzR-O7pu2wlj8EjRd1N76t6Tm1q36B4uOSdfry_b1Xuy-Xhbr5abxAiVxkRJzm3hjLHc5iAzkVa8YI4xBUyw3Moqq4SuUoBKSKkrm0vFawNK5RqA12JOkvOuCQNicHU5hsPBsC-BlUdR5UlUeRF14J_O_DCN_6B_urNuEQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Snyder, Gregory F</creator><creator>Rodriguez-Gomez, Vicente</creator><creator>Lotz, Jennifer M</creator><creator>Torrey, Paul</creator><creator>Quirk, Amanda C N</creator><creator>Hernquist, Lars</creator><creator>Vogelsberger, Mark</creator><creator>Freeman, Peter E</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4226-304X</orcidid><orcidid>https://orcid.org/0000-0002-5653-0786</orcidid><orcidid>https://orcid.org/0000-0002-9495-0079</orcidid></search><sort><creationdate>20190701</creationdate><title>Automated distant galaxy merger classifications from Space Telescope images using the Illustris simulation</title><author>Snyder, Gregory F ; Rodriguez-Gomez, Vicente ; Lotz, Jennifer M ; Torrey, Paul ; Quirk, Amanda C N ; Hernquist, Lars ; Vogelsberger, Mark ; Freeman, Peter E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-7422d9eccd2d814635b290e00710308d4b6b3ab511b344abd8472fc1778a112f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyder, Gregory F</creatorcontrib><creatorcontrib>Rodriguez-Gomez, Vicente</creatorcontrib><creatorcontrib>Lotz, Jennifer M</creatorcontrib><creatorcontrib>Torrey, Paul</creatorcontrib><creatorcontrib>Quirk, Amanda C N</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><creatorcontrib>Vogelsberger, Mark</creatorcontrib><creatorcontrib>Freeman, Peter E</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Snyder, Gregory F</au><au>Rodriguez-Gomez, Vicente</au><au>Lotz, Jennifer M</au><au>Torrey, Paul</au><au>Quirk, Amanda C N</au><au>Hernquist, Lars</au><au>Vogelsberger, Mark</au><au>Freeman, Peter E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated distant galaxy merger classifications from Space Telescope images using the Illustris simulation</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>486</volume><issue>3</issue><spage>3702</spage><epage>3720</epage><pages>3702-3720</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT We present image-based evolution of galaxy mergers from the Illustris cosmological simulation at 12 time-steps over 0.5 &lt; z &lt; 5. To do so, we created approximately one million synthetic deep Hubble Space Telescope and James Webb Space Telescope images and measured common morphological indicators. Using the merger tree, we assess methods to observationally select mergers with stellar mass ratios as low as 10:1 completing within ±250 Myr of the mock observation. We confirm that common one- or two-dimensional statistics select mergers so defined with low purity and completeness, leading to high statistical errors. As an alternative, we train redshift-dependent random forests (RFs) based on 5–10 inputs. Cross-validation shows the RFs yield superior, yet still imperfect, measurements of the late-stage merger fraction, and they select more mergers in bulge-dominated galaxies. When applied to CANDELS morphology catalogues, the RFs estimate a merger rate increasing to at least z = 3, albeit two times higher than expected by theory. This suggests possible mismatches in the feedback-determined morphologies, but affirms the basic understanding of galaxy merger evolution. The RFs achieve completeness of roughly $70{{\ \rm per\ cent}}$ at 0.5 &lt; z &lt; 3, and purity increasing from $10{{\ \rm per\ cent}}$ at z = 0.5–60 per cent at z = 3. At earlier times, the training sets are insufficient, motivating larger simulations and smaller time sampling. By blending large surveys and large simulations, such machine learning techniques offer a promising opportunity to teach us the strengths and weaknesses of inferences about galaxy evolution.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stz1059</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4226-304X</orcidid><orcidid>https://orcid.org/0000-0002-5653-0786</orcidid><orcidid>https://orcid.org/0000-0002-9495-0079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2019-07, Vol.486 (3), p.3702-3720
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stz1059
source Oxford Journals Open Access Collection
title Automated distant galaxy merger classifications from Space Telescope images using the Illustris simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20distant%20galaxy%20merger%20classifications%20from%20Space%20Telescope%20images%20using%20the%20Illustris%20simulation&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Snyder,%20Gregory%20F&rft.date=2019-07-01&rft.volume=486&rft.issue=3&rft.spage=3702&rft.epage=3720&rft.pages=3702-3720&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stz1059&rft_dat=%3Coup_TOX%3E10.1093/mnras/stz1059%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stz1059&rfr_iscdi=true