On the dynamics and survival of fractal clouds in galactic winds

Abstract Recent observations suggest that dense gas clouds can survive even in hot galactic winds. Here we show that the inclusion of turbulent densities with different statistical properties has significant effects on the evolution of wind-swept clouds. We investigate how the initial standard devia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2019-07, Vol.486 (4), p.4526-4544
Hauptverfasser: Banda-Barragán, W E, Zertuche, F J, Federrath, C, García Del Valle, J, Brüggen, M, Wagner, A Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4544
container_issue 4
container_start_page 4526
container_title Monthly notices of the Royal Astronomical Society
container_volume 486
creator Banda-Barragán, W E
Zertuche, F J
Federrath, C
García Del Valle, J
Brüggen, M
Wagner, A Y
description Abstract Recent observations suggest that dense gas clouds can survive even in hot galactic winds. Here we show that the inclusion of turbulent densities with different statistical properties has significant effects on the evolution of wind-swept clouds. We investigate how the initial standard deviation of the lognormal density field influences the dynamics of quasi-isothermal clouds embedded in supersonic winds. We compare uniform, fractal solenoidal, and fractal compressive cloud models in both 3D and 2D hydrodynamical simulations. We find that the processes of cloud disruption and dense gas entrainment are functions of the initial density distribution in the cloud. Fractal clouds accelerate, mix, and are disrupted earlier than uniform clouds. Within the fractal cloud sample, compressive clouds retain high-density nuclei, so they are more confined, less accelerated, and have lower velocity dispersions than their solenoidal counterparts. Compressive clouds are also less prone to Kelvin–Helmholtz and Rayleigh–Taylor instabilities, so they survive longer than solenoidal clouds. By comparing the cloud properties at the destruction time, we find that dense gas entrainment is more effective in uniform clouds than in either of the fractal clouds, and it is more effective in solenoidal than in compressive models. In contrast, mass loading into the wind is more efficient in compressive cloud models than in uniform or solenoidal models. Overall, wide density distributions lead to inefficient entrainment, but they facilitate mass loading and favour the survival of very dense gas in hot galactic winds.
doi_str_mv 10.1093/mnras/stz1040
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stz1040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stz1040</oup_id><sourcerecordid>10.1093/mnras/stz1040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-41de4e226c3ccc55be6f91c6d01e3fd41a152605d9913f273418420a203773183</originalsourceid><addsrcrecordid>eNqFjztPwzAUhS0EEqUwsntkMb3X13GSDVRBQarUBebI-AFBeVR2UlR-PYF2ZzpHR5-O9DF2jXCLUNKi7aJJizR8Iyg4YTMknQlZan3KZgCUiSJHPGcXKX0CgCKpZ-xu0_Hhw3O370xb28RN53ga467emYb3gYdo7DBV2_SjS7zu-Ltppqm2_KvuXLpkZ8E0yV8dc85eHx9elk9ivVk9L-_XwhLpQSh0XnkptSVrbZa9eR1KtNoBegpOocFMashcWSIFmZPCQkkwEijPCQuaM3H4tbFPKfpQbWPdmrivEKpf_epPvzrqT_zNge_H7T_oDwUvXJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the dynamics and survival of fractal clouds in galactic winds</title><source>Oxford Journals Open Access Collection</source><creator>Banda-Barragán, W E ; Zertuche, F J ; Federrath, C ; García Del Valle, J ; Brüggen, M ; Wagner, A Y</creator><creatorcontrib>Banda-Barragán, W E ; Zertuche, F J ; Federrath, C ; García Del Valle, J ; Brüggen, M ; Wagner, A Y</creatorcontrib><description>Abstract Recent observations suggest that dense gas clouds can survive even in hot galactic winds. Here we show that the inclusion of turbulent densities with different statistical properties has significant effects on the evolution of wind-swept clouds. We investigate how the initial standard deviation of the lognormal density field influences the dynamics of quasi-isothermal clouds embedded in supersonic winds. We compare uniform, fractal solenoidal, and fractal compressive cloud models in both 3D and 2D hydrodynamical simulations. We find that the processes of cloud disruption and dense gas entrainment are functions of the initial density distribution in the cloud. Fractal clouds accelerate, mix, and are disrupted earlier than uniform clouds. Within the fractal cloud sample, compressive clouds retain high-density nuclei, so they are more confined, less accelerated, and have lower velocity dispersions than their solenoidal counterparts. Compressive clouds are also less prone to Kelvin–Helmholtz and Rayleigh–Taylor instabilities, so they survive longer than solenoidal clouds. By comparing the cloud properties at the destruction time, we find that dense gas entrainment is more effective in uniform clouds than in either of the fractal clouds, and it is more effective in solenoidal than in compressive models. In contrast, mass loading into the wind is more efficient in compressive cloud models than in uniform or solenoidal models. Overall, wide density distributions lead to inefficient entrainment, but they facilitate mass loading and favour the survival of very dense gas in hot galactic winds.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stz1040</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2019-07, Vol.486 (4), p.4526-4544</ispartof><rights>2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-41de4e226c3ccc55be6f91c6d01e3fd41a152605d9913f273418420a203773183</citedby><cites>FETCH-LOGICAL-c336t-41de4e226c3ccc55be6f91c6d01e3fd41a152605d9913f273418420a203773183</cites><orcidid>0000-0002-1960-4870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stz1040$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Banda-Barragán, W E</creatorcontrib><creatorcontrib>Zertuche, F J</creatorcontrib><creatorcontrib>Federrath, C</creatorcontrib><creatorcontrib>García Del Valle, J</creatorcontrib><creatorcontrib>Brüggen, M</creatorcontrib><creatorcontrib>Wagner, A Y</creatorcontrib><title>On the dynamics and survival of fractal clouds in galactic winds</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract Recent observations suggest that dense gas clouds can survive even in hot galactic winds. Here we show that the inclusion of turbulent densities with different statistical properties has significant effects on the evolution of wind-swept clouds. We investigate how the initial standard deviation of the lognormal density field influences the dynamics of quasi-isothermal clouds embedded in supersonic winds. We compare uniform, fractal solenoidal, and fractal compressive cloud models in both 3D and 2D hydrodynamical simulations. We find that the processes of cloud disruption and dense gas entrainment are functions of the initial density distribution in the cloud. Fractal clouds accelerate, mix, and are disrupted earlier than uniform clouds. Within the fractal cloud sample, compressive clouds retain high-density nuclei, so they are more confined, less accelerated, and have lower velocity dispersions than their solenoidal counterparts. Compressive clouds are also less prone to Kelvin–Helmholtz and Rayleigh–Taylor instabilities, so they survive longer than solenoidal clouds. By comparing the cloud properties at the destruction time, we find that dense gas entrainment is more effective in uniform clouds than in either of the fractal clouds, and it is more effective in solenoidal than in compressive models. In contrast, mass loading into the wind is more efficient in compressive cloud models than in uniform or solenoidal models. Overall, wide density distributions lead to inefficient entrainment, but they facilitate mass loading and favour the survival of very dense gas in hot galactic winds.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFjztPwzAUhS0EEqUwsntkMb3X13GSDVRBQarUBebI-AFBeVR2UlR-PYF2ZzpHR5-O9DF2jXCLUNKi7aJJizR8Iyg4YTMknQlZan3KZgCUiSJHPGcXKX0CgCKpZ-xu0_Hhw3O370xb28RN53ga467emYb3gYdo7DBV2_SjS7zu-Ltppqm2_KvuXLpkZ8E0yV8dc85eHx9elk9ivVk9L-_XwhLpQSh0XnkptSVrbZa9eR1KtNoBegpOocFMashcWSIFmZPCQkkwEijPCQuaM3H4tbFPKfpQbWPdmrivEKpf_epPvzrqT_zNge_H7T_oDwUvXJM</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Banda-Barragán, W E</creator><creator>Zertuche, F J</creator><creator>Federrath, C</creator><creator>García Del Valle, J</creator><creator>Brüggen, M</creator><creator>Wagner, A Y</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1960-4870</orcidid></search><sort><creationdate>20190701</creationdate><title>On the dynamics and survival of fractal clouds in galactic winds</title><author>Banda-Barragán, W E ; Zertuche, F J ; Federrath, C ; García Del Valle, J ; Brüggen, M ; Wagner, A Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-41de4e226c3ccc55be6f91c6d01e3fd41a152605d9913f273418420a203773183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banda-Barragán, W E</creatorcontrib><creatorcontrib>Zertuche, F J</creatorcontrib><creatorcontrib>Federrath, C</creatorcontrib><creatorcontrib>García Del Valle, J</creatorcontrib><creatorcontrib>Brüggen, M</creatorcontrib><creatorcontrib>Wagner, A Y</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Banda-Barragán, W E</au><au>Zertuche, F J</au><au>Federrath, C</au><au>García Del Valle, J</au><au>Brüggen, M</au><au>Wagner, A Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the dynamics and survival of fractal clouds in galactic winds</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>486</volume><issue>4</issue><spage>4526</spage><epage>4544</epage><pages>4526-4544</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract Recent observations suggest that dense gas clouds can survive even in hot galactic winds. Here we show that the inclusion of turbulent densities with different statistical properties has significant effects on the evolution of wind-swept clouds. We investigate how the initial standard deviation of the lognormal density field influences the dynamics of quasi-isothermal clouds embedded in supersonic winds. We compare uniform, fractal solenoidal, and fractal compressive cloud models in both 3D and 2D hydrodynamical simulations. We find that the processes of cloud disruption and dense gas entrainment are functions of the initial density distribution in the cloud. Fractal clouds accelerate, mix, and are disrupted earlier than uniform clouds. Within the fractal cloud sample, compressive clouds retain high-density nuclei, so they are more confined, less accelerated, and have lower velocity dispersions than their solenoidal counterparts. Compressive clouds are also less prone to Kelvin–Helmholtz and Rayleigh–Taylor instabilities, so they survive longer than solenoidal clouds. By comparing the cloud properties at the destruction time, we find that dense gas entrainment is more effective in uniform clouds than in either of the fractal clouds, and it is more effective in solenoidal than in compressive models. In contrast, mass loading into the wind is more efficient in compressive cloud models than in uniform or solenoidal models. Overall, wide density distributions lead to inefficient entrainment, but they facilitate mass loading and favour the survival of very dense gas in hot galactic winds.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stz1040</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1960-4870</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2019-07, Vol.486 (4), p.4526-4544
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stz1040
source Oxford Journals Open Access Collection
title On the dynamics and survival of fractal clouds in galactic winds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20dynamics%20and%20survival%20of%20fractal%20clouds%20in%20galactic%20winds&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Banda-Barrag%C3%A1n,%20W%20E&rft.date=2019-07-01&rft.volume=486&rft.issue=4&rft.spage=4526&rft.epage=4544&rft.pages=4526-4544&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stz1040&rft_dat=%3Coup_TOX%3E10.1093/mnras/stz1040%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stz1040&rfr_iscdi=true