Hill stability of the coplanar four-body problem with a binary subsystem

Abstract We consider a coplanar four-body system including a binary subsystem. The Hill stability is studied using the zero velocity surface of the four-body problem. The value of c 2 E determines the topology of zero-velocity surfaces and hence regions of possible motions that bifurcates at the col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2017-08, Vol.469 (3), p.3576-3587
Hauptverfasser: Liu, Chao, Gong, Shengping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3587
container_issue 3
container_start_page 3576
container_title Monthly notices of the Royal Astronomical Society
container_volume 469
creator Liu, Chao
Gong, Shengping
description Abstract We consider a coplanar four-body system including a binary subsystem. The Hill stability is studied using the zero velocity surface of the four-body problem. The value of c 2 E determines the topology of zero-velocity surfaces and hence regions of possible motions that bifurcates at the collinear equilibrium points. The Hill stability of the system is determined by the relation between the actual and critical values of c 2 E. The critical value of c 2 E is determined by the mass of the bodies and other two time-varying parameters associated to the orbit of binary. The influences of the two parameters on the Hill stability are investigated and discussed. Different from the three-body problem, the primary bifurcation may happen at different equilibrium points. Besides, a new temporary Hill stability is defined to illustrate the case that the system may be stable or unstable.
doi_str_mv 10.1093/mnras/stx1017
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stx1017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stx1017</oup_id><sourcerecordid>10.1093/mnras/stx1017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-7641e22eb6f3cd3d17460d777971752cf4ad1ed2b80596e64304305dd84429293</originalsourceid><addsrcrecordid>eNqFkD1PwzAYhC0EEqUwsntkMX39ETseUQUEqRILzJEdO2pQUke2I8i_J9DunW64R6fTg9A9hUcKmm-GQzRpk_IPBaou0IpyWRCmpbxEKwBekFJReo1uUvoCAMGZXKGq6voep2xs13d5xqHFee9xE8beHEzEbZgiscHNeIzB9n7A313eY4Ntt9QzTpNNc8p-uEVXremTvzvlGn2-PH9sK7J7f33bPu1IwxRkoqSgnjFvZcsbxx1VQoJTSmlFVcGaVhhHvWO2hEJLLwVfjkLhXCkE00zzNSLH3SaGlKJv6zF2w3KlplD_aaj_NdQnDQv_cOTDNJ5BfwHHIV_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hill stability of the coplanar four-body problem with a binary subsystem</title><source>Oxford Journals Open Access Collection</source><creator>Liu, Chao ; Gong, Shengping</creator><creatorcontrib>Liu, Chao ; Gong, Shengping</creatorcontrib><description>Abstract We consider a coplanar four-body system including a binary subsystem. The Hill stability is studied using the zero velocity surface of the four-body problem. The value of c 2 E determines the topology of zero-velocity surfaces and hence regions of possible motions that bifurcates at the collinear equilibrium points. The Hill stability of the system is determined by the relation between the actual and critical values of c 2 E. The critical value of c 2 E is determined by the mass of the bodies and other two time-varying parameters associated to the orbit of binary. The influences of the two parameters on the Hill stability are investigated and discussed. Different from the three-body problem, the primary bifurcation may happen at different equilibrium points. Besides, a new temporary Hill stability is defined to illustrate the case that the system may be stable or unstable.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stx1017</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2017-08, Vol.469 (3), p.3576-3587</ispartof><rights>2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-7641e22eb6f3cd3d17460d777971752cf4ad1ed2b80596e64304305dd84429293</citedby><cites>FETCH-LOGICAL-c270t-7641e22eb6f3cd3d17460d777971752cf4ad1ed2b80596e64304305dd84429293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stx1017$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Gong, Shengping</creatorcontrib><title>Hill stability of the coplanar four-body problem with a binary subsystem</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract We consider a coplanar four-body system including a binary subsystem. The Hill stability is studied using the zero velocity surface of the four-body problem. The value of c 2 E determines the topology of zero-velocity surfaces and hence regions of possible motions that bifurcates at the collinear equilibrium points. The Hill stability of the system is determined by the relation between the actual and critical values of c 2 E. The critical value of c 2 E is determined by the mass of the bodies and other two time-varying parameters associated to the orbit of binary. The influences of the two parameters on the Hill stability are investigated and discussed. Different from the three-body problem, the primary bifurcation may happen at different equilibrium points. Besides, a new temporary Hill stability is defined to illustrate the case that the system may be stable or unstable.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAYhC0EEqUwsntkMX39ETseUQUEqRILzJEdO2pQUke2I8i_J9DunW64R6fTg9A9hUcKmm-GQzRpk_IPBaou0IpyWRCmpbxEKwBekFJReo1uUvoCAMGZXKGq6voep2xs13d5xqHFee9xE8beHEzEbZgiscHNeIzB9n7A313eY4Ntt9QzTpNNc8p-uEVXremTvzvlGn2-PH9sK7J7f33bPu1IwxRkoqSgnjFvZcsbxx1VQoJTSmlFVcGaVhhHvWO2hEJLLwVfjkLhXCkE00zzNSLH3SaGlKJv6zF2w3KlplD_aaj_NdQnDQv_cOTDNJ5BfwHHIV_4</recordid><startdate>20170811</startdate><enddate>20170811</enddate><creator>Liu, Chao</creator><creator>Gong, Shengping</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170811</creationdate><title>Hill stability of the coplanar four-body problem with a binary subsystem</title><author>Liu, Chao ; Gong, Shengping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-7641e22eb6f3cd3d17460d777971752cf4ad1ed2b80596e64304305dd84429293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Gong, Shengping</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Chao</au><au>Gong, Shengping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hill stability of the coplanar four-body problem with a binary subsystem</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2017-08-11</date><risdate>2017</risdate><volume>469</volume><issue>3</issue><spage>3576</spage><epage>3587</epage><pages>3576-3587</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract We consider a coplanar four-body system including a binary subsystem. The Hill stability is studied using the zero velocity surface of the four-body problem. The value of c 2 E determines the topology of zero-velocity surfaces and hence regions of possible motions that bifurcates at the collinear equilibrium points. The Hill stability of the system is determined by the relation between the actual and critical values of c 2 E. The critical value of c 2 E is determined by the mass of the bodies and other two time-varying parameters associated to the orbit of binary. The influences of the two parameters on the Hill stability are investigated and discussed. Different from the three-body problem, the primary bifurcation may happen at different equilibrium points. Besides, a new temporary Hill stability is defined to illustrate the case that the system may be stable or unstable.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stx1017</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2017-08, Vol.469 (3), p.3576-3587
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stx1017
source Oxford Journals Open Access Collection
title Hill stability of the coplanar four-body problem with a binary subsystem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hill%20stability%20of%20the%20coplanar%20four-body%20problem%20with%20a%20binary%20subsystem&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Liu,%20Chao&rft.date=2017-08-11&rft.volume=469&rft.issue=3&rft.spage=3576&rft.epage=3587&rft.pages=3576-3587&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stx1017&rft_dat=%3Coup_TOX%3E10.1093/mnras/stx1017%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stx1017&rfr_iscdi=true