The effect of the virial state of molecular clouds on the influence of feedback from massive stars

Abstract A set of Smoothed Particle Hydrodynamics simulations of the influence of photoionizing radiation and stellar winds on a series of 104 M⊙ turbulent molecular clouds with initial virial ratios of 0.7, 1.1, 1.5, 1.9 and 2.3 and initial mean densities of 136, 1135 and 9096 cm−3 are presented. R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2017-05, Vol.467 (1), p.1067-1082
1. Verfasser: Dale, James E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1082
container_issue 1
container_start_page 1067
container_title Monthly notices of the Royal Astronomical Society
container_volume 467
creator Dale, James E.
description Abstract A set of Smoothed Particle Hydrodynamics simulations of the influence of photoionizing radiation and stellar winds on a series of 104 M⊙ turbulent molecular clouds with initial virial ratios of 0.7, 1.1, 1.5, 1.9 and 2.3 and initial mean densities of 136, 1135 and 9096 cm−3 are presented. Reductions in star formation efficiency rates are found to be modest, in the range of 30–50 per cent, and do not vary greatly across the parameter space. In no case was star formation entirely terminated over the ≈3 Myr duration of the simulations. The fractions of material unbound by feedback are in the range of 20–60 per cent, clouds with the lowest escape velocities being the most strongly affected. Leakage of ionized gas leads to the H ii regions rapidly becoming underpressured. The destructive effects of ionization are thus largely not due to thermally driven expansion of the H ii regions, but to momentum transfer by photoevaporation of fresh material. Our simulations have similar global ionization rates and we show that the effects of feedback upon them can be adequately modelled as a steady injection of momentum, resembling a momentum-conserving wind.
doi_str_mv 10.1093/mnras/stx028
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stx028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stx028</oup_id><sourcerecordid>10.1093/mnras/stx028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-86ebabb6047c4d6663d5893d254e25c70c0f7fd65162fdd93e404e3617ec97ec3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqGw8QO8sRD6_BEnGVEFBakSS5kjx34WgSSu7KSCf0-TMDNcPd2nozscQm4ZPDAoxbrrg47rOHwDL85IwoTKUl4qdU4SAJGlRc7YJbmK8RMApOAqIfX-Ayk6h2ag3tHh1I5NaHRL46AHnH6db9GMrQ7UtH60kfp-5pretSP2ZoYcoq21-aIu-I52OsbmiNNGiNfkwuk24s3fXZH356f95iXdvW1fN4-71AghhrRQWOu6ViBzI61SStisKIXlmUSemRwMuNxZlTHFnbWlQAkShWI5mvIUsSL3y64JPsaArjqEptPhp2JQTX6q2U-1-Dnhdwvux8P_5C-LG2ml</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The effect of the virial state of molecular clouds on the influence of feedback from massive stars</title><source>Oxford Journals Open Access Collection</source><creator>Dale, James E.</creator><creatorcontrib>Dale, James E.</creatorcontrib><description>Abstract A set of Smoothed Particle Hydrodynamics simulations of the influence of photoionizing radiation and stellar winds on a series of 104 M⊙ turbulent molecular clouds with initial virial ratios of 0.7, 1.1, 1.5, 1.9 and 2.3 and initial mean densities of 136, 1135 and 9096 cm−3 are presented. Reductions in star formation efficiency rates are found to be modest, in the range of 30–50 per cent, and do not vary greatly across the parameter space. In no case was star formation entirely terminated over the ≈3 Myr duration of the simulations. The fractions of material unbound by feedback are in the range of 20–60 per cent, clouds with the lowest escape velocities being the most strongly affected. Leakage of ionized gas leads to the H ii regions rapidly becoming underpressured. The destructive effects of ionization are thus largely not due to thermally driven expansion of the H ii regions, but to momentum transfer by photoevaporation of fresh material. Our simulations have similar global ionization rates and we show that the effects of feedback upon them can be adequately modelled as a steady injection of momentum, resembling a momentum-conserving wind.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stx028</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2017-05, Vol.467 (1), p.1067-1082</ispartof><rights>2017 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-86ebabb6047c4d6663d5893d254e25c70c0f7fd65162fdd93e404e3617ec97ec3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stx028$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Dale, James E.</creatorcontrib><title>The effect of the virial state of molecular clouds on the influence of feedback from massive stars</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract A set of Smoothed Particle Hydrodynamics simulations of the influence of photoionizing radiation and stellar winds on a series of 104 M⊙ turbulent molecular clouds with initial virial ratios of 0.7, 1.1, 1.5, 1.9 and 2.3 and initial mean densities of 136, 1135 and 9096 cm−3 are presented. Reductions in star formation efficiency rates are found to be modest, in the range of 30–50 per cent, and do not vary greatly across the parameter space. In no case was star formation entirely terminated over the ≈3 Myr duration of the simulations. The fractions of material unbound by feedback are in the range of 20–60 per cent, clouds with the lowest escape velocities being the most strongly affected. Leakage of ionized gas leads to the H ii regions rapidly becoming underpressured. The destructive effects of ionization are thus largely not due to thermally driven expansion of the H ii regions, but to momentum transfer by photoevaporation of fresh material. Our simulations have similar global ionization rates and we show that the effects of feedback upon them can be adequately modelled as a steady injection of momentum, resembling a momentum-conserving wind.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqGw8QO8sRD6_BEnGVEFBakSS5kjx34WgSSu7KSCf0-TMDNcPd2nozscQm4ZPDAoxbrrg47rOHwDL85IwoTKUl4qdU4SAJGlRc7YJbmK8RMApOAqIfX-Ayk6h2ag3tHh1I5NaHRL46AHnH6db9GMrQ7UtH60kfp-5pretSP2ZoYcoq21-aIu-I52OsbmiNNGiNfkwuk24s3fXZH356f95iXdvW1fN4-71AghhrRQWOu6ViBzI61SStisKIXlmUSemRwMuNxZlTHFnbWlQAkShWI5mvIUsSL3y64JPsaArjqEptPhp2JQTX6q2U-1-Dnhdwvux8P_5C-LG2ml</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Dale, James E.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>The effect of the virial state of molecular clouds on the influence of feedback from massive stars</title><author>Dale, James E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-86ebabb6047c4d6663d5893d254e25c70c0f7fd65162fdd93e404e3617ec97ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dale, James E.</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dale, James E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of the virial state of molecular clouds on the influence of feedback from massive stars</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>467</volume><issue>1</issue><spage>1067</spage><epage>1082</epage><pages>1067-1082</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract A set of Smoothed Particle Hydrodynamics simulations of the influence of photoionizing radiation and stellar winds on a series of 104 M⊙ turbulent molecular clouds with initial virial ratios of 0.7, 1.1, 1.5, 1.9 and 2.3 and initial mean densities of 136, 1135 and 9096 cm−3 are presented. Reductions in star formation efficiency rates are found to be modest, in the range of 30–50 per cent, and do not vary greatly across the parameter space. In no case was star formation entirely terminated over the ≈3 Myr duration of the simulations. The fractions of material unbound by feedback are in the range of 20–60 per cent, clouds with the lowest escape velocities being the most strongly affected. Leakage of ionized gas leads to the H ii regions rapidly becoming underpressured. The destructive effects of ionization are thus largely not due to thermally driven expansion of the H ii regions, but to momentum transfer by photoevaporation of fresh material. Our simulations have similar global ionization rates and we show that the effects of feedback upon them can be adequately modelled as a steady injection of momentum, resembling a momentum-conserving wind.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stx028</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2017-05, Vol.467 (1), p.1067-1082
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stx028
source Oxford Journals Open Access Collection
title The effect of the virial state of molecular clouds on the influence of feedback from massive stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20the%20virial%20state%20of%20molecular%20clouds%20on%20the%20influence%20of%20feedback%20from%20massive%20stars&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Dale,%20James%20E.&rft.date=2017-05-01&rft.volume=467&rft.issue=1&rft.spage=1067&rft.epage=1082&rft.pages=1067-1082&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stx028&rft_dat=%3Coup_TOX%3E10.1093/mnras/stx028%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stx028&rfr_iscdi=true