bilby in space: Bayesian inference for transient gravitational-wave signals observed with LISA

ABSTRACT The Laser Interferometer Space Antenna (LISA) is scheduled to launch in the mid-2030s, and is expected to observe gravitational-wave candidates from massive black hole binary mergers, extreme mass ratio inspirals, and more. Accurately inferring the source properties from the observed gravit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2024-03, Vol.529 (3), p.3052-3059
Hauptverfasser: Hoy, C, Nuttall, L K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3059
container_issue 3
container_start_page 3052
container_title Monthly notices of the Royal Astronomical Society
container_volume 529
creator Hoy, C
Nuttall, L K
description ABSTRACT The Laser Interferometer Space Antenna (LISA) is scheduled to launch in the mid-2030s, and is expected to observe gravitational-wave candidates from massive black hole binary mergers, extreme mass ratio inspirals, and more. Accurately inferring the source properties from the observed gravitational-wave signals is crucial to maximize the scientific return of the LISA mission. bilby, the user-friendly Bayesian inference library, is regularly used for performing gravitational-wave inference on data from existing ground-based gravitational-wave detectors. Given that Bayesian inference with LISA includes additional subtitles and complexities beyond its ground-based counterpart, in this work we introduce bilby_lisa , a python package that extends bilby to perform parameter estimation with LISA. We show that full nested sampling can be performed to accurately infer the properties of LISA sources from transient gravitational-wave signals in (a) zero noise and (b) idealized instrumental noise. By focusing on massive black hole binary mergers, we demonstrate that higher order multipole waveform models can be used to analyse a year’s worth of simulated LISA data, and discuss the computational cost and performance of full nested sampling compared with techniques for optimizing likelihood calculations, such as the heterodyned likelihood.
doi_str_mv 10.1093/mnras/stae646
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stae646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stae646</oup_id><sourcerecordid>10.1093/mnras/stae646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-5ed9b9a95860f1b4b5f8c8482f1c7d04f12b4bc9ff07b2f298411e5fec415cc13</originalsourceid><addsrcrecordid>eNqFkE1PAyEURYnRxFpdumfpBgsM0MFdbfxo0sSFunUCzKNiWqYBbDP_3tF27-q-3HdyFweha0ZvGdXVZBOTyZNcDCihTtCIVUoSrpU6RSNKK0nqKWPn6CLnL0qpqLgaoQ8b1rbHIeK8NQ7u8L3pIQcTh8pDgugA-y7hkkzMAWLBq2R2oZgSumjWZG92gHNYDXfGnc2QdtDifSifeLl4nV2iMz984OqYY_T--PA2fybLl6fFfLYkjitZiIRWW220rBX1zAorfe1qUXPP3LSlwjM-lE57T6eWe65rwRhID04w6Ryrxogcdl3qck7gm20KG5P6htHmV07zJ6c5yhn4mwPffW__QX8AoJ5p8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>bilby in space: Bayesian inference for transient gravitational-wave signals observed with LISA</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><creator>Hoy, C ; Nuttall, L K</creator><creatorcontrib>Hoy, C ; Nuttall, L K</creatorcontrib><description>ABSTRACT The Laser Interferometer Space Antenna (LISA) is scheduled to launch in the mid-2030s, and is expected to observe gravitational-wave candidates from massive black hole binary mergers, extreme mass ratio inspirals, and more. Accurately inferring the source properties from the observed gravitational-wave signals is crucial to maximize the scientific return of the LISA mission. bilby, the user-friendly Bayesian inference library, is regularly used for performing gravitational-wave inference on data from existing ground-based gravitational-wave detectors. Given that Bayesian inference with LISA includes additional subtitles and complexities beyond its ground-based counterpart, in this work we introduce bilby_lisa , a python package that extends bilby to perform parameter estimation with LISA. We show that full nested sampling can be performed to accurately infer the properties of LISA sources from transient gravitational-wave signals in (a) zero noise and (b) idealized instrumental noise. By focusing on massive black hole binary mergers, we demonstrate that higher order multipole waveform models can be used to analyse a year’s worth of simulated LISA data, and discuss the computational cost and performance of full nested sampling compared with techniques for optimizing likelihood calculations, such as the heterodyned likelihood.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stae646</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2024-03, Vol.529 (3), p.3052-3059</ispartof><rights>2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c265t-5ed9b9a95860f1b4b5f8c8482f1c7d04f12b4bc9ff07b2f298411e5fec415cc13</cites><orcidid>0000-0002-8843-6719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1598,27901,27902</link.rule.ids></links><search><creatorcontrib>Hoy, C</creatorcontrib><creatorcontrib>Nuttall, L K</creatorcontrib><title>bilby in space: Bayesian inference for transient gravitational-wave signals observed with LISA</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT The Laser Interferometer Space Antenna (LISA) is scheduled to launch in the mid-2030s, and is expected to observe gravitational-wave candidates from massive black hole binary mergers, extreme mass ratio inspirals, and more. Accurately inferring the source properties from the observed gravitational-wave signals is crucial to maximize the scientific return of the LISA mission. bilby, the user-friendly Bayesian inference library, is regularly used for performing gravitational-wave inference on data from existing ground-based gravitational-wave detectors. Given that Bayesian inference with LISA includes additional subtitles and complexities beyond its ground-based counterpart, in this work we introduce bilby_lisa , a python package that extends bilby to perform parameter estimation with LISA. We show that full nested sampling can be performed to accurately infer the properties of LISA sources from transient gravitational-wave signals in (a) zero noise and (b) idealized instrumental noise. By focusing on massive black hole binary mergers, we demonstrate that higher order multipole waveform models can be used to analyse a year’s worth of simulated LISA data, and discuss the computational cost and performance of full nested sampling compared with techniques for optimizing likelihood calculations, such as the heterodyned likelihood.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkE1PAyEURYnRxFpdumfpBgsM0MFdbfxo0sSFunUCzKNiWqYBbDP_3tF27-q-3HdyFweha0ZvGdXVZBOTyZNcDCihTtCIVUoSrpU6RSNKK0nqKWPn6CLnL0qpqLgaoQ8b1rbHIeK8NQ7u8L3pIQcTh8pDgugA-y7hkkzMAWLBq2R2oZgSumjWZG92gHNYDXfGnc2QdtDifSifeLl4nV2iMz984OqYY_T--PA2fybLl6fFfLYkjitZiIRWW220rBX1zAorfe1qUXPP3LSlwjM-lE57T6eWe65rwRhID04w6Ryrxogcdl3qck7gm20KG5P6htHmV07zJ6c5yhn4mwPffW__QX8AoJ5p8A</recordid><startdate>20240318</startdate><enddate>20240318</enddate><creator>Hoy, C</creator><creator>Nuttall, L K</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8843-6719</orcidid></search><sort><creationdate>20240318</creationdate><title>bilby in space: Bayesian inference for transient gravitational-wave signals observed with LISA</title><author>Hoy, C ; Nuttall, L K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-5ed9b9a95860f1b4b5f8c8482f1c7d04f12b4bc9ff07b2f298411e5fec415cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoy, C</creatorcontrib><creatorcontrib>Nuttall, L K</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoy, C</au><au>Nuttall, L K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>bilby in space: Bayesian inference for transient gravitational-wave signals observed with LISA</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2024-03-18</date><risdate>2024</risdate><volume>529</volume><issue>3</issue><spage>3052</spage><epage>3059</epage><pages>3052-3059</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The Laser Interferometer Space Antenna (LISA) is scheduled to launch in the mid-2030s, and is expected to observe gravitational-wave candidates from massive black hole binary mergers, extreme mass ratio inspirals, and more. Accurately inferring the source properties from the observed gravitational-wave signals is crucial to maximize the scientific return of the LISA mission. bilby, the user-friendly Bayesian inference library, is regularly used for performing gravitational-wave inference on data from existing ground-based gravitational-wave detectors. Given that Bayesian inference with LISA includes additional subtitles and complexities beyond its ground-based counterpart, in this work we introduce bilby_lisa , a python package that extends bilby to perform parameter estimation with LISA. We show that full nested sampling can be performed to accurately infer the properties of LISA sources from transient gravitational-wave signals in (a) zero noise and (b) idealized instrumental noise. By focusing on massive black hole binary mergers, we demonstrate that higher order multipole waveform models can be used to analyse a year’s worth of simulated LISA data, and discuss the computational cost and performance of full nested sampling compared with techniques for optimizing likelihood calculations, such as the heterodyned likelihood.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stae646</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8843-6719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2024-03, Vol.529 (3), p.3052-3059
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stae646
source Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals
title bilby in space: Bayesian inference for transient gravitational-wave signals observed with LISA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=bilby%20in%20space:%20Bayesian%20inference%20for%20transient%20gravitational-wave%20signals%20observed%20with%20LISA&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Hoy,%20C&rft.date=2024-03-18&rft.volume=529&rft.issue=3&rft.spage=3052&rft.epage=3059&rft.pages=3052-3059&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stae646&rft_dat=%3Coup_cross%3E10.1093/mnras/stae646%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stae646&rfr_iscdi=true