Nested sampling statistical errors
ABSTRACT Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in K...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2023-05, Vol.521 (3), p.4100-4108 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4108 |
---|---|
container_issue | 3 |
container_start_page | 4100 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 521 |
creator | Fowlie, Andrew Li, Qiao Lv, Huifang Sun, Yecheng Zhang, Jia Zheng, Le |
description | ABSTRACT
Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in Keeton’s expression from an analysis of moments. This approximate agreement was previously only known numerically and was somewhat mysterious. Second, we show that the uncertainty in single NS runs approximately equals the standard deviation in repeated NS runs. While intuitive, this was previously taken for granted. We close by investigating our results and their assumptions in several numerical examples, including cases in which NS uncertainties increase without bound. |
doi_str_mv | 10.1093/mnras/stad751 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stad751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad751</oup_id><sourcerecordid>10.1093/mnras/stad751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-8c97269d8a7dcd91acf8a479452abb63c986d7b03b4f880700de4a988b8adaf53</originalsourceid><addsrcrecordid>eNqFjz1PwzAURS0EEqEwskdMLKbPduKPEVVQkCq6lDl6sR0UlDSRnxn49xTaneku5x7pMHYr4EGAU8txn5CWlDGYWpyxQihdc-m0PmcFgKq5NUJcsiuiTwColNQFu3uLlGMoCcd56Pcf5eGee8q9x6GMKU2JrtlFhwPFm9Mu2Pvz0271wjfb9evqccO9lDpz652R2gWLJvjgBPrOYmVcVUtsW628szqYFlRbddaCAQixQmdtazFgV6sF40evTxNRil0zp37E9N0IaH4Dm7_A5hR44O-P_PQ1_4P-ADbwVAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nested sampling statistical errors</title><source>Oxford Journals Open Access Collection</source><creator>Fowlie, Andrew ; Li, Qiao ; Lv, Huifang ; Sun, Yecheng ; Zhang, Jia ; Zheng, Le</creator><creatorcontrib>Fowlie, Andrew ; Li, Qiao ; Lv, Huifang ; Sun, Yecheng ; Zhang, Jia ; Zheng, Le</creatorcontrib><description>ABSTRACT
Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in Keeton’s expression from an analysis of moments. This approximate agreement was previously only known numerically and was somewhat mysterious. Second, we show that the uncertainty in single NS runs approximately equals the standard deviation in repeated NS runs. While intuitive, this was previously taken for granted. We close by investigating our results and their assumptions in several numerical examples, including cases in which NS uncertainties increase without bound.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad751</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2023-05, Vol.521 (3), p.4100-4108</ispartof><rights>2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-8c97269d8a7dcd91acf8a479452abb63c986d7b03b4f880700de4a988b8adaf53</cites><orcidid>0000-0003-0008-3961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1601,27907,27908</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stad751$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Fowlie, Andrew</creatorcontrib><creatorcontrib>Li, Qiao</creatorcontrib><creatorcontrib>Lv, Huifang</creatorcontrib><creatorcontrib>Sun, Yecheng</creatorcontrib><creatorcontrib>Zhang, Jia</creatorcontrib><creatorcontrib>Zheng, Le</creatorcontrib><title>Nested sampling statistical errors</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in Keeton’s expression from an analysis of moments. This approximate agreement was previously only known numerically and was somewhat mysterious. Second, we show that the uncertainty in single NS runs approximately equals the standard deviation in repeated NS runs. While intuitive, this was previously taken for granted. We close by investigating our results and their assumptions in several numerical examples, including cases in which NS uncertainties increase without bound.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAURS0EEqEwskdMLKbPduKPEVVQkCq6lDl6sR0UlDSRnxn49xTaneku5x7pMHYr4EGAU8txn5CWlDGYWpyxQihdc-m0PmcFgKq5NUJcsiuiTwColNQFu3uLlGMoCcd56Pcf5eGee8q9x6GMKU2JrtlFhwPFm9Mu2Pvz0271wjfb9evqccO9lDpz652R2gWLJvjgBPrOYmVcVUtsW628szqYFlRbddaCAQixQmdtazFgV6sF40evTxNRil0zp37E9N0IaH4Dm7_A5hR44O-P_PQ1_4P-ADbwVAw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Fowlie, Andrew</creator><creator>Li, Qiao</creator><creator>Lv, Huifang</creator><creator>Sun, Yecheng</creator><creator>Zhang, Jia</creator><creator>Zheng, Le</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0008-3961</orcidid></search><sort><creationdate>20230501</creationdate><title>Nested sampling statistical errors</title><author>Fowlie, Andrew ; Li, Qiao ; Lv, Huifang ; Sun, Yecheng ; Zhang, Jia ; Zheng, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-8c97269d8a7dcd91acf8a479452abb63c986d7b03b4f880700de4a988b8adaf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fowlie, Andrew</creatorcontrib><creatorcontrib>Li, Qiao</creatorcontrib><creatorcontrib>Lv, Huifang</creatorcontrib><creatorcontrib>Sun, Yecheng</creatorcontrib><creatorcontrib>Zhang, Jia</creatorcontrib><creatorcontrib>Zheng, Le</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fowlie, Andrew</au><au>Li, Qiao</au><au>Lv, Huifang</au><au>Sun, Yecheng</au><au>Zhang, Jia</au><au>Zheng, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested sampling statistical errors</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>521</volume><issue>3</issue><spage>4100</spage><epage>4108</epage><pages>4100-4108</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in Keeton’s expression from an analysis of moments. This approximate agreement was previously only known numerically and was somewhat mysterious. Second, we show that the uncertainty in single NS runs approximately equals the standard deviation in repeated NS runs. While intuitive, this was previously taken for granted. We close by investigating our results and their assumptions in several numerical examples, including cases in which NS uncertainties increase without bound.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stad751</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0008-3961</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2023-05, Vol.521 (3), p.4100-4108 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_stad751 |
source | Oxford Journals Open Access Collection |
title | Nested sampling statistical errors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%20sampling%20statistical%20errors&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Fowlie,%20Andrew&rft.date=2023-05-01&rft.volume=521&rft.issue=3&rft.spage=4100&rft.epage=4108&rft.pages=4100-4108&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad751&rft_dat=%3Coup_TOX%3E10.1093/mnras/stad751%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad751&rfr_iscdi=true |