Nested sampling statistical errors

ABSTRACT Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2023-05, Vol.521 (3), p.4100-4108
Hauptverfasser: Fowlie, Andrew, Li, Qiao, Lv, Huifang, Sun, Yecheng, Zhang, Jia, Zheng, Le
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4108
container_issue 3
container_start_page 4100
container_title Monthly notices of the Royal Astronomical Society
container_volume 521
creator Fowlie, Andrew
Li, Qiao
Lv, Huifang
Sun, Yecheng
Zhang, Jia
Zheng, Le
description ABSTRACT Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in Keeton’s expression from an analysis of moments. This approximate agreement was previously only known numerically and was somewhat mysterious. Second, we show that the uncertainty in single NS runs approximately equals the standard deviation in repeated NS runs. While intuitive, this was previously taken for granted. We close by investigating our results and their assumptions in several numerical examples, including cases in which NS uncertainties increase without bound.
doi_str_mv 10.1093/mnras/stad751
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stad751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad751</oup_id><sourcerecordid>10.1093/mnras/stad751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-8c97269d8a7dcd91acf8a479452abb63c986d7b03b4f880700de4a988b8adaf53</originalsourceid><addsrcrecordid>eNqFjz1PwzAURS0EEqEwskdMLKbPduKPEVVQkCq6lDl6sR0UlDSRnxn49xTaneku5x7pMHYr4EGAU8txn5CWlDGYWpyxQihdc-m0PmcFgKq5NUJcsiuiTwColNQFu3uLlGMoCcd56Pcf5eGee8q9x6GMKU2JrtlFhwPFm9Mu2Pvz0271wjfb9evqccO9lDpz652R2gWLJvjgBPrOYmVcVUtsW628szqYFlRbddaCAQixQmdtazFgV6sF40evTxNRil0zp37E9N0IaH4Dm7_A5hR44O-P_PQ1_4P-ADbwVAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nested sampling statistical errors</title><source>Oxford Journals Open Access Collection</source><creator>Fowlie, Andrew ; Li, Qiao ; Lv, Huifang ; Sun, Yecheng ; Zhang, Jia ; Zheng, Le</creator><creatorcontrib>Fowlie, Andrew ; Li, Qiao ; Lv, Huifang ; Sun, Yecheng ; Zhang, Jia ; Zheng, Le</creatorcontrib><description>ABSTRACT Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in Keeton’s expression from an analysis of moments. This approximate agreement was previously only known numerically and was somewhat mysterious. Second, we show that the uncertainty in single NS runs approximately equals the standard deviation in repeated NS runs. While intuitive, this was previously taken for granted. We close by investigating our results and their assumptions in several numerical examples, including cases in which NS uncertainties increase without bound.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad751</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2023-05, Vol.521 (3), p.4100-4108</ispartof><rights>2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-8c97269d8a7dcd91acf8a479452abb63c986d7b03b4f880700de4a988b8adaf53</cites><orcidid>0000-0003-0008-3961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1601,27907,27908</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stad751$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Fowlie, Andrew</creatorcontrib><creatorcontrib>Li, Qiao</creatorcontrib><creatorcontrib>Lv, Huifang</creatorcontrib><creatorcontrib>Sun, Yecheng</creatorcontrib><creatorcontrib>Zhang, Jia</creatorcontrib><creatorcontrib>Zheng, Le</creatorcontrib><title>Nested sampling statistical errors</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in Keeton’s expression from an analysis of moments. This approximate agreement was previously only known numerically and was somewhat mysterious. Second, we show that the uncertainty in single NS runs approximately equals the standard deviation in repeated NS runs. While intuitive, this was previously taken for granted. We close by investigating our results and their assumptions in several numerical examples, including cases in which NS uncertainties increase without bound.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAURS0EEqEwskdMLKbPduKPEVVQkCq6lDl6sR0UlDSRnxn49xTaneku5x7pMHYr4EGAU8txn5CWlDGYWpyxQihdc-m0PmcFgKq5NUJcsiuiTwColNQFu3uLlGMoCcd56Pcf5eGee8q9x6GMKU2JrtlFhwPFm9Mu2Pvz0271wjfb9evqccO9lDpz652R2gWLJvjgBPrOYmVcVUtsW628szqYFlRbddaCAQixQmdtazFgV6sF40evTxNRil0zp37E9N0IaH4Dm7_A5hR44O-P_PQ1_4P-ADbwVAw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Fowlie, Andrew</creator><creator>Li, Qiao</creator><creator>Lv, Huifang</creator><creator>Sun, Yecheng</creator><creator>Zhang, Jia</creator><creator>Zheng, Le</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0008-3961</orcidid></search><sort><creationdate>20230501</creationdate><title>Nested sampling statistical errors</title><author>Fowlie, Andrew ; Li, Qiao ; Lv, Huifang ; Sun, Yecheng ; Zhang, Jia ; Zheng, Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-8c97269d8a7dcd91acf8a479452abb63c986d7b03b4f880700de4a988b8adaf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fowlie, Andrew</creatorcontrib><creatorcontrib>Li, Qiao</creatorcontrib><creatorcontrib>Lv, Huifang</creatorcontrib><creatorcontrib>Sun, Yecheng</creatorcontrib><creatorcontrib>Zhang, Jia</creatorcontrib><creatorcontrib>Zheng, Le</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fowlie, Andrew</au><au>Li, Qiao</au><au>Lv, Huifang</au><au>Sun, Yecheng</au><au>Zhang, Jia</au><au>Zheng, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested sampling statistical errors</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>521</volume><issue>3</issue><spage>4100</spage><epage>4108</epage><pages>4100-4108</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Nested sampling (NS) is a popular algorithm for Bayesian computation. We investigate statistical errors in NS both analytically and numerically. We show two analytic results. First, we show that the leading terms in Skilling’s expression using information theory match the leading terms in Keeton’s expression from an analysis of moments. This approximate agreement was previously only known numerically and was somewhat mysterious. Second, we show that the uncertainty in single NS runs approximately equals the standard deviation in repeated NS runs. While intuitive, this was previously taken for granted. We close by investigating our results and their assumptions in several numerical examples, including cases in which NS uncertainties increase without bound.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stad751</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0008-3961</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2023-05, Vol.521 (3), p.4100-4108
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stad751
source Oxford Journals Open Access Collection
title Nested sampling statistical errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A21%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%20sampling%20statistical%20errors&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Fowlie,%20Andrew&rft.date=2023-05-01&rft.volume=521&rft.issue=3&rft.spage=4100&rft.epage=4108&rft.pages=4100-4108&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad751&rft_dat=%3Coup_TOX%3E10.1093/mnras/stad751%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad751&rfr_iscdi=true