Combining chirp mass, luminosity distance, and sky localization from gravitational wave events to detect the cosmic dipole

ABSTRACT A key test of the isotropy of the Universe on large scales consists in comparing the dipole in the cosmic microwave background (CMB) temperature with the dipole in the distribution of sources at low redshift. Current analyses find a dipole in the number counts of quasars and radio sources t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mon.Not.Roy.Astron.Soc 2023-10, Vol.526 (3), p.4673-4689
Hauptverfasser: Grimm, N, Pijnenburg, M, Mastrogiovanni, S, Bonvin, C, Foffa, S, Cusin, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4689
container_issue 3
container_start_page 4673
container_title Mon.Not.Roy.Astron.Soc
container_volume 526
creator Grimm, N
Pijnenburg, M
Mastrogiovanni, S
Bonvin, C
Foffa, S
Cusin, G
description ABSTRACT A key test of the isotropy of the Universe on large scales consists in comparing the dipole in the cosmic microwave background (CMB) temperature with the dipole in the distribution of sources at low redshift. Current analyses find a dipole in the number counts of quasars and radio sources that is 2–5 times larger than expected from the CMB, leading to a tension reaching 5σ. In this paper, we derive a consistent framework to measure the dipole independently from gravitational wave (GW) detections. We exploit the fact that the observer velocity does not only change the distribution of events in the sky, but also the luminosity distance and redshifted chirp mass, which can be extracted from the GW waveform. We show that the estimator with higher signal-to-noise ratio is the dipole in the chirp mass measured from a population of binary neutron stars. Combining all estimators (accounting for their covariance) improves the detectability of the dipole by 30–50 per cent compared to number counting of binary black holes alone. We find that a few 106 events are necessary to detect a dipole consistent with the CMB one, whereas if the dipole is as large as predicted by radio sources, it will already be detectable with 105 events, which would correspond to a single year of observation with next-generation GW detectors. GW sources provide therefore a robust and independent way of testing the isotropy of the Universe.
doi_str_mv 10.1093/mnras/stad3034
format Article
fullrecord <record><control><sourceid>oup_hal_p</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stad3034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad3034</oup_id><sourcerecordid>10.1093/mnras/stad3034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-3f3cbdc53ab64abeb6279565039d61e7a8adf043b1097e8f64646a3ad3fb0293</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOKdXz-8qrFvStOl6HEOdMPCye3lN0y3aJiXJKvOvt9v8cZR3ePDl-z7wPoTcMzplNOez1jj0Mx-w4pQnF2TEuEijOBfikowo5Wk0zxi7Jjfev1FKEx6LEflc2rbURpstyJ12HbTo_QSafauN9TocoNID0kg1ATQV-PcDNFZioz8xaGugdraFrcNeh1OADXxgr0D1ygQPwUKlgpIBwk6BtL7VckB2tlG35KrGxqu77z0mm6fHzXIVrV-fX5aLdSQ5jUPEay7LSqYcS5FgqUoRZ3kqUsrzSjCV4RyrevimHCRkal6LZBjkg4W6pHHOx-ThjN1hU3ROt-gOhUVdrBbr4pjRJGYspnnPhu703JXOeu9U_XvAaHGUXJwkFz-S_-B23_3X_QLFuYKL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combining chirp mass, luminosity distance, and sky localization from gravitational wave events to detect the cosmic dipole</title><source>Oxford Journals Open Access Collection</source><creator>Grimm, N ; Pijnenburg, M ; Mastrogiovanni, S ; Bonvin, C ; Foffa, S ; Cusin, G</creator><creatorcontrib>Grimm, N ; Pijnenburg, M ; Mastrogiovanni, S ; Bonvin, C ; Foffa, S ; Cusin, G</creatorcontrib><description>ABSTRACT A key test of the isotropy of the Universe on large scales consists in comparing the dipole in the cosmic microwave background (CMB) temperature with the dipole in the distribution of sources at low redshift. Current analyses find a dipole in the number counts of quasars and radio sources that is 2–5 times larger than expected from the CMB, leading to a tension reaching 5σ. In this paper, we derive a consistent framework to measure the dipole independently from gravitational wave (GW) detections. We exploit the fact that the observer velocity does not only change the distribution of events in the sky, but also the luminosity distance and redshifted chirp mass, which can be extracted from the GW waveform. We show that the estimator with higher signal-to-noise ratio is the dipole in the chirp mass measured from a population of binary neutron stars. Combining all estimators (accounting for their covariance) improves the detectability of the dipole by 30–50 per cent compared to number counting of binary black holes alone. We find that a few 106 events are necessary to detect a dipole consistent with the CMB one, whereas if the dipole is as large as predicted by radio sources, it will already be detectable with 105 events, which would correspond to a single year of observation with next-generation GW detectors. GW sources provide therefore a robust and independent way of testing the isotropy of the Universe.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad3034</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Astrophysics ; Physics</subject><ispartof>Mon.Not.Roy.Astron.Soc, 2023-10, Vol.526 (3), p.4673-4689</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society. 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-3f3cbdc53ab64abeb6279565039d61e7a8adf043b1097e8f64646a3ad3fb0293</cites><orcidid>0000-0003-1606-4183 ; 0000-0002-5318-4064 ; 0000-0001-9602-0599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04211209$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimm, N</creatorcontrib><creatorcontrib>Pijnenburg, M</creatorcontrib><creatorcontrib>Mastrogiovanni, S</creatorcontrib><creatorcontrib>Bonvin, C</creatorcontrib><creatorcontrib>Foffa, S</creatorcontrib><creatorcontrib>Cusin, G</creatorcontrib><title>Combining chirp mass, luminosity distance, and sky localization from gravitational wave events to detect the cosmic dipole</title><title>Mon.Not.Roy.Astron.Soc</title><description>ABSTRACT A key test of the isotropy of the Universe on large scales consists in comparing the dipole in the cosmic microwave background (CMB) temperature with the dipole in the distribution of sources at low redshift. Current analyses find a dipole in the number counts of quasars and radio sources that is 2–5 times larger than expected from the CMB, leading to a tension reaching 5σ. In this paper, we derive a consistent framework to measure the dipole independently from gravitational wave (GW) detections. We exploit the fact that the observer velocity does not only change the distribution of events in the sky, but also the luminosity distance and redshifted chirp mass, which can be extracted from the GW waveform. We show that the estimator with higher signal-to-noise ratio is the dipole in the chirp mass measured from a population of binary neutron stars. Combining all estimators (accounting for their covariance) improves the detectability of the dipole by 30–50 per cent compared to number counting of binary black holes alone. We find that a few 106 events are necessary to detect a dipole consistent with the CMB one, whereas if the dipole is as large as predicted by radio sources, it will already be detectable with 105 events, which would correspond to a single year of observation with next-generation GW detectors. GW sources provide therefore a robust and independent way of testing the isotropy of the Universe.</description><subject>Astrophysics</subject><subject>Physics</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkM9LwzAUx4MoOKdXz-8qrFvStOl6HEOdMPCye3lN0y3aJiXJKvOvt9v8cZR3ePDl-z7wPoTcMzplNOez1jj0Mx-w4pQnF2TEuEijOBfikowo5Wk0zxi7Jjfev1FKEx6LEflc2rbURpstyJ12HbTo_QSafauN9TocoNID0kg1ATQV-PcDNFZioz8xaGugdraFrcNeh1OADXxgr0D1ygQPwUKlgpIBwk6BtL7VckB2tlG35KrGxqu77z0mm6fHzXIVrV-fX5aLdSQ5jUPEay7LSqYcS5FgqUoRZ3kqUsrzSjCV4RyrevimHCRkal6LZBjkg4W6pHHOx-ThjN1hU3ROt-gOhUVdrBbr4pjRJGYspnnPhu703JXOeu9U_XvAaHGUXJwkFz-S_-B23_3X_QLFuYKL</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Grimm, N</creator><creator>Pijnenburg, M</creator><creator>Mastrogiovanni, S</creator><creator>Bonvin, C</creator><creator>Foffa, S</creator><creator>Cusin, G</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1606-4183</orcidid><orcidid>https://orcid.org/0000-0002-5318-4064</orcidid><orcidid>https://orcid.org/0000-0001-9602-0599</orcidid></search><sort><creationdate>20231010</creationdate><title>Combining chirp mass, luminosity distance, and sky localization from gravitational wave events to detect the cosmic dipole</title><author>Grimm, N ; Pijnenburg, M ; Mastrogiovanni, S ; Bonvin, C ; Foffa, S ; Cusin, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-3f3cbdc53ab64abeb6279565039d61e7a8adf043b1097e8f64646a3ad3fb0293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astrophysics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm, N</creatorcontrib><creatorcontrib>Pijnenburg, M</creatorcontrib><creatorcontrib>Mastrogiovanni, S</creatorcontrib><creatorcontrib>Bonvin, C</creatorcontrib><creatorcontrib>Foffa, S</creatorcontrib><creatorcontrib>Cusin, G</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mon.Not.Roy.Astron.Soc</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, N</au><au>Pijnenburg, M</au><au>Mastrogiovanni, S</au><au>Bonvin, C</au><au>Foffa, S</au><au>Cusin, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining chirp mass, luminosity distance, and sky localization from gravitational wave events to detect the cosmic dipole</atitle><jtitle>Mon.Not.Roy.Astron.Soc</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>526</volume><issue>3</issue><spage>4673</spage><epage>4689</epage><pages>4673-4689</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT A key test of the isotropy of the Universe on large scales consists in comparing the dipole in the cosmic microwave background (CMB) temperature with the dipole in the distribution of sources at low redshift. Current analyses find a dipole in the number counts of quasars and radio sources that is 2–5 times larger than expected from the CMB, leading to a tension reaching 5σ. In this paper, we derive a consistent framework to measure the dipole independently from gravitational wave (GW) detections. We exploit the fact that the observer velocity does not only change the distribution of events in the sky, but also the luminosity distance and redshifted chirp mass, which can be extracted from the GW waveform. We show that the estimator with higher signal-to-noise ratio is the dipole in the chirp mass measured from a population of binary neutron stars. Combining all estimators (accounting for their covariance) improves the detectability of the dipole by 30–50 per cent compared to number counting of binary black holes alone. We find that a few 106 events are necessary to detect a dipole consistent with the CMB one, whereas if the dipole is as large as predicted by radio sources, it will already be detectable with 105 events, which would correspond to a single year of observation with next-generation GW detectors. GW sources provide therefore a robust and independent way of testing the isotropy of the Universe.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stad3034</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1606-4183</orcidid><orcidid>https://orcid.org/0000-0002-5318-4064</orcidid><orcidid>https://orcid.org/0000-0001-9602-0599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Mon.Not.Roy.Astron.Soc, 2023-10, Vol.526 (3), p.4673-4689
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stad3034
source Oxford Journals Open Access Collection
subjects Astrophysics
Physics
title Combining chirp mass, luminosity distance, and sky localization from gravitational wave events to detect the cosmic dipole
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20chirp%20mass,%20luminosity%20distance,%20and%20sky%20localization%20from%20gravitational%20wave%20events%20to%20detect%20the%20cosmic%20dipole&rft.jtitle=Mon.Not.Roy.Astron.Soc&rft.au=Grimm,%20N&rft.date=2023-10-10&rft.volume=526&rft.issue=3&rft.spage=4673&rft.epage=4689&rft.pages=4673-4689&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad3034&rft_dat=%3Coup_hal_p%3E10.1093/mnras/stad3034%3C/oup_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad3034&rfr_iscdi=true