The chemical evolution of the solar neighbourhood for planet-hosting stars

ABSTRACT Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2023-07, Vol.524 (4), p.6295-6330
Hauptverfasser: Pignatari, Marco, Trueman, Thomas C L, Womack, Kate A, Gibson, Brad K, Côté, Benoit, Turrini, Diego, Sneden, Christopher, Mojzsis, Stephen J, Stancliffe, Richard J, Fong, Paul, Lawson, Thomas V, Keegans, James D, Pilkington, Kate, Passy, Jean-Claude, Beers, Timothy C, Lugaro, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6330
container_issue 4
container_start_page 6295
container_title Monthly notices of the Royal Astronomical Society
container_volume 524
creator Pignatari, Marco
Trueman, Thomas C L
Womack, Kate A
Gibson, Brad K
Côté, Benoit
Turrini, Diego
Sneden, Christopher
Mojzsis, Stephen J
Stancliffe, Richard J
Fong, Paul
Lawson, Thomas V
Keegans, James D
Pilkington, Kate
Passy, Jean-Claude
Beers, Timothy C
Lugaro, Maria
description ABSTRACT Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations.
doi_str_mv 10.1093/mnras/stad2167
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stad2167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad2167</oup_id><sourcerecordid>10.1093/mnras/stad2167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-76ceb9587f0758b56d1194f5550a385a9e6ec14ca38e4508286d14ea53ac1b8a3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqGwMntlcOuLY8cZUQUUVImlzNHFcZqgJI5sB4l_T6AwM51e3fshPYTcAl8DL8RmGD2GTYhYp6DyM5KAUJKlhVLnJOFcSKZzgEtyFcI75zwTqUrIy6G11LR26Az21H64fo6dG6lraFw-wfXo6Wi7Y1u52bfO1bRxnk49jjay1oXYjUe6jPpwTS4a7IO9-b0r8vb4cNju2P716Xl7v2dGgIgsV8ZWhdR5w3OpK6lqgCJrpJQchZZYWGUNZGYRNpNcp3pxZBalQAOVRrEi61Ov8S4Eb5ty8t2A_rMEXn6TKH9IlH8klsDdKeDm6T_vF2O8Yrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The chemical evolution of the solar neighbourhood for planet-hosting stars</title><source>Oxford Journals Open Access Collection</source><creator>Pignatari, Marco ; Trueman, Thomas C L ; Womack, Kate A ; Gibson, Brad K ; Côté, Benoit ; Turrini, Diego ; Sneden, Christopher ; Mojzsis, Stephen J ; Stancliffe, Richard J ; Fong, Paul ; Lawson, Thomas V ; Keegans, James D ; Pilkington, Kate ; Passy, Jean-Claude ; Beers, Timothy C ; Lugaro, Maria</creator><creatorcontrib>Pignatari, Marco ; Trueman, Thomas C L ; Womack, Kate A ; Gibson, Brad K ; Côté, Benoit ; Turrini, Diego ; Sneden, Christopher ; Mojzsis, Stephen J ; Stancliffe, Richard J ; Fong, Paul ; Lawson, Thomas V ; Keegans, James D ; Pilkington, Kate ; Passy, Jean-Claude ; Beers, Timothy C ; Lugaro, Maria</creatorcontrib><description>ABSTRACT Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad2167</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2023-07, Vol.524 (4), p.6295-6330</ispartof><rights>2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-76ceb9587f0758b56d1194f5550a385a9e6ec14ca38e4508286d14ea53ac1b8a3</citedby><cites>FETCH-LOGICAL-c313t-76ceb9587f0758b56d1194f5550a385a9e6ec14ca38e4508286d14ea53ac1b8a3</cites><orcidid>0000-0002-4615-2515 ; 0000-0002-1609-6938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stad2167$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Pignatari, Marco</creatorcontrib><creatorcontrib>Trueman, Thomas C L</creatorcontrib><creatorcontrib>Womack, Kate A</creatorcontrib><creatorcontrib>Gibson, Brad K</creatorcontrib><creatorcontrib>Côté, Benoit</creatorcontrib><creatorcontrib>Turrini, Diego</creatorcontrib><creatorcontrib>Sneden, Christopher</creatorcontrib><creatorcontrib>Mojzsis, Stephen J</creatorcontrib><creatorcontrib>Stancliffe, Richard J</creatorcontrib><creatorcontrib>Fong, Paul</creatorcontrib><creatorcontrib>Lawson, Thomas V</creatorcontrib><creatorcontrib>Keegans, James D</creatorcontrib><creatorcontrib>Pilkington, Kate</creatorcontrib><creatorcontrib>Passy, Jean-Claude</creatorcontrib><creatorcontrib>Beers, Timothy C</creatorcontrib><creatorcontrib>Lugaro, Maria</creatorcontrib><title>The chemical evolution of the solar neighbourhood for planet-hosting stars</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqGwMntlcOuLY8cZUQUUVImlzNHFcZqgJI5sB4l_T6AwM51e3fshPYTcAl8DL8RmGD2GTYhYp6DyM5KAUJKlhVLnJOFcSKZzgEtyFcI75zwTqUrIy6G11LR26Az21H64fo6dG6lraFw-wfXo6Wi7Y1u52bfO1bRxnk49jjay1oXYjUe6jPpwTS4a7IO9-b0r8vb4cNju2P716Xl7v2dGgIgsV8ZWhdR5w3OpK6lqgCJrpJQchZZYWGUNZGYRNpNcp3pxZBalQAOVRrEi61Ov8S4Eb5ty8t2A_rMEXn6TKH9IlH8klsDdKeDm6T_vF2O8Yrw</recordid><startdate>20230729</startdate><enddate>20230729</enddate><creator>Pignatari, Marco</creator><creator>Trueman, Thomas C L</creator><creator>Womack, Kate A</creator><creator>Gibson, Brad K</creator><creator>Côté, Benoit</creator><creator>Turrini, Diego</creator><creator>Sneden, Christopher</creator><creator>Mojzsis, Stephen J</creator><creator>Stancliffe, Richard J</creator><creator>Fong, Paul</creator><creator>Lawson, Thomas V</creator><creator>Keegans, James D</creator><creator>Pilkington, Kate</creator><creator>Passy, Jean-Claude</creator><creator>Beers, Timothy C</creator><creator>Lugaro, Maria</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4615-2515</orcidid><orcidid>https://orcid.org/0000-0002-1609-6938</orcidid></search><sort><creationdate>20230729</creationdate><title>The chemical evolution of the solar neighbourhood for planet-hosting stars</title><author>Pignatari, Marco ; Trueman, Thomas C L ; Womack, Kate A ; Gibson, Brad K ; Côté, Benoit ; Turrini, Diego ; Sneden, Christopher ; Mojzsis, Stephen J ; Stancliffe, Richard J ; Fong, Paul ; Lawson, Thomas V ; Keegans, James D ; Pilkington, Kate ; Passy, Jean-Claude ; Beers, Timothy C ; Lugaro, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-76ceb9587f0758b56d1194f5550a385a9e6ec14ca38e4508286d14ea53ac1b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pignatari, Marco</creatorcontrib><creatorcontrib>Trueman, Thomas C L</creatorcontrib><creatorcontrib>Womack, Kate A</creatorcontrib><creatorcontrib>Gibson, Brad K</creatorcontrib><creatorcontrib>Côté, Benoit</creatorcontrib><creatorcontrib>Turrini, Diego</creatorcontrib><creatorcontrib>Sneden, Christopher</creatorcontrib><creatorcontrib>Mojzsis, Stephen J</creatorcontrib><creatorcontrib>Stancliffe, Richard J</creatorcontrib><creatorcontrib>Fong, Paul</creatorcontrib><creatorcontrib>Lawson, Thomas V</creatorcontrib><creatorcontrib>Keegans, James D</creatorcontrib><creatorcontrib>Pilkington, Kate</creatorcontrib><creatorcontrib>Passy, Jean-Claude</creatorcontrib><creatorcontrib>Beers, Timothy C</creatorcontrib><creatorcontrib>Lugaro, Maria</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pignatari, Marco</au><au>Trueman, Thomas C L</au><au>Womack, Kate A</au><au>Gibson, Brad K</au><au>Côté, Benoit</au><au>Turrini, Diego</au><au>Sneden, Christopher</au><au>Mojzsis, Stephen J</au><au>Stancliffe, Richard J</au><au>Fong, Paul</au><au>Lawson, Thomas V</au><au>Keegans, James D</au><au>Pilkington, Kate</au><au>Passy, Jean-Claude</au><au>Beers, Timothy C</au><au>Lugaro, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The chemical evolution of the solar neighbourhood for planet-hosting stars</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-07-29</date><risdate>2023</risdate><volume>524</volume><issue>4</issue><spage>6295</spage><epage>6330</epage><pages>6295-6330</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stad2167</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-4615-2515</orcidid><orcidid>https://orcid.org/0000-0002-1609-6938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2023-07, Vol.524 (4), p.6295-6330
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stad2167
source Oxford Journals Open Access Collection
title The chemical evolution of the solar neighbourhood for planet-hosting stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20chemical%20evolution%20of%20the%20solar%20neighbourhood%20for%20planet-hosting%20stars&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Pignatari,%20Marco&rft.date=2023-07-29&rft.volume=524&rft.issue=4&rft.spage=6295&rft.epage=6330&rft.pages=6295-6330&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad2167&rft_dat=%3Coup_TOX%3E10.1093/mnras/stad2167%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad2167&rfr_iscdi=true