The chemical evolution of the solar neighbourhood for planet-hosting stars
ABSTRACT Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2023-07, Vol.524 (4), p.6295-6330 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6330 |
---|---|
container_issue | 4 |
container_start_page | 6295 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 524 |
creator | Pignatari, Marco Trueman, Thomas C L Womack, Kate A Gibson, Brad K Côté, Benoit Turrini, Diego Sneden, Christopher Mojzsis, Stephen J Stancliffe, Richard J Fong, Paul Lawson, Thomas V Keegans, James D Pilkington, Kate Passy, Jean-Claude Beers, Timothy C Lugaro, Maria |
description | ABSTRACT
Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations. |
doi_str_mv | 10.1093/mnras/stad2167 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stad2167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad2167</oup_id><sourcerecordid>10.1093/mnras/stad2167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-76ceb9587f0758b56d1194f5550a385a9e6ec14ca38e4508286d14ea53ac1b8a3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqGwMntlcOuLY8cZUQUUVImlzNHFcZqgJI5sB4l_T6AwM51e3fshPYTcAl8DL8RmGD2GTYhYp6DyM5KAUJKlhVLnJOFcSKZzgEtyFcI75zwTqUrIy6G11LR26Az21H64fo6dG6lraFw-wfXo6Wi7Y1u52bfO1bRxnk49jjay1oXYjUe6jPpwTS4a7IO9-b0r8vb4cNju2P716Xl7v2dGgIgsV8ZWhdR5w3OpK6lqgCJrpJQchZZYWGUNZGYRNpNcp3pxZBalQAOVRrEi61Ov8S4Eb5ty8t2A_rMEXn6TKH9IlH8klsDdKeDm6T_vF2O8Yrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The chemical evolution of the solar neighbourhood for planet-hosting stars</title><source>Oxford Journals Open Access Collection</source><creator>Pignatari, Marco ; Trueman, Thomas C L ; Womack, Kate A ; Gibson, Brad K ; Côté, Benoit ; Turrini, Diego ; Sneden, Christopher ; Mojzsis, Stephen J ; Stancliffe, Richard J ; Fong, Paul ; Lawson, Thomas V ; Keegans, James D ; Pilkington, Kate ; Passy, Jean-Claude ; Beers, Timothy C ; Lugaro, Maria</creator><creatorcontrib>Pignatari, Marco ; Trueman, Thomas C L ; Womack, Kate A ; Gibson, Brad K ; Côté, Benoit ; Turrini, Diego ; Sneden, Christopher ; Mojzsis, Stephen J ; Stancliffe, Richard J ; Fong, Paul ; Lawson, Thomas V ; Keegans, James D ; Pilkington, Kate ; Passy, Jean-Claude ; Beers, Timothy C ; Lugaro, Maria</creatorcontrib><description>ABSTRACT
Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad2167</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2023-07, Vol.524 (4), p.6295-6330</ispartof><rights>2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-76ceb9587f0758b56d1194f5550a385a9e6ec14ca38e4508286d14ea53ac1b8a3</citedby><cites>FETCH-LOGICAL-c313t-76ceb9587f0758b56d1194f5550a385a9e6ec14ca38e4508286d14ea53ac1b8a3</cites><orcidid>0000-0002-4615-2515 ; 0000-0002-1609-6938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stad2167$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Pignatari, Marco</creatorcontrib><creatorcontrib>Trueman, Thomas C L</creatorcontrib><creatorcontrib>Womack, Kate A</creatorcontrib><creatorcontrib>Gibson, Brad K</creatorcontrib><creatorcontrib>Côté, Benoit</creatorcontrib><creatorcontrib>Turrini, Diego</creatorcontrib><creatorcontrib>Sneden, Christopher</creatorcontrib><creatorcontrib>Mojzsis, Stephen J</creatorcontrib><creatorcontrib>Stancliffe, Richard J</creatorcontrib><creatorcontrib>Fong, Paul</creatorcontrib><creatorcontrib>Lawson, Thomas V</creatorcontrib><creatorcontrib>Keegans, James D</creatorcontrib><creatorcontrib>Pilkington, Kate</creatorcontrib><creatorcontrib>Passy, Jean-Claude</creatorcontrib><creatorcontrib>Beers, Timothy C</creatorcontrib><creatorcontrib>Lugaro, Maria</creatorcontrib><title>The chemical evolution of the solar neighbourhood for planet-hosting stars</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqGwMntlcOuLY8cZUQUUVImlzNHFcZqgJI5sB4l_T6AwM51e3fshPYTcAl8DL8RmGD2GTYhYp6DyM5KAUJKlhVLnJOFcSKZzgEtyFcI75zwTqUrIy6G11LR26Az21H64fo6dG6lraFw-wfXo6Wi7Y1u52bfO1bRxnk49jjay1oXYjUe6jPpwTS4a7IO9-b0r8vb4cNju2P716Xl7v2dGgIgsV8ZWhdR5w3OpK6lqgCJrpJQchZZYWGUNZGYRNpNcp3pxZBalQAOVRrEi61Ov8S4Eb5ty8t2A_rMEXn6TKH9IlH8klsDdKeDm6T_vF2O8Yrw</recordid><startdate>20230729</startdate><enddate>20230729</enddate><creator>Pignatari, Marco</creator><creator>Trueman, Thomas C L</creator><creator>Womack, Kate A</creator><creator>Gibson, Brad K</creator><creator>Côté, Benoit</creator><creator>Turrini, Diego</creator><creator>Sneden, Christopher</creator><creator>Mojzsis, Stephen J</creator><creator>Stancliffe, Richard J</creator><creator>Fong, Paul</creator><creator>Lawson, Thomas V</creator><creator>Keegans, James D</creator><creator>Pilkington, Kate</creator><creator>Passy, Jean-Claude</creator><creator>Beers, Timothy C</creator><creator>Lugaro, Maria</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4615-2515</orcidid><orcidid>https://orcid.org/0000-0002-1609-6938</orcidid></search><sort><creationdate>20230729</creationdate><title>The chemical evolution of the solar neighbourhood for planet-hosting stars</title><author>Pignatari, Marco ; Trueman, Thomas C L ; Womack, Kate A ; Gibson, Brad K ; Côté, Benoit ; Turrini, Diego ; Sneden, Christopher ; Mojzsis, Stephen J ; Stancliffe, Richard J ; Fong, Paul ; Lawson, Thomas V ; Keegans, James D ; Pilkington, Kate ; Passy, Jean-Claude ; Beers, Timothy C ; Lugaro, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-76ceb9587f0758b56d1194f5550a385a9e6ec14ca38e4508286d14ea53ac1b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pignatari, Marco</creatorcontrib><creatorcontrib>Trueman, Thomas C L</creatorcontrib><creatorcontrib>Womack, Kate A</creatorcontrib><creatorcontrib>Gibson, Brad K</creatorcontrib><creatorcontrib>Côté, Benoit</creatorcontrib><creatorcontrib>Turrini, Diego</creatorcontrib><creatorcontrib>Sneden, Christopher</creatorcontrib><creatorcontrib>Mojzsis, Stephen J</creatorcontrib><creatorcontrib>Stancliffe, Richard J</creatorcontrib><creatorcontrib>Fong, Paul</creatorcontrib><creatorcontrib>Lawson, Thomas V</creatorcontrib><creatorcontrib>Keegans, James D</creatorcontrib><creatorcontrib>Pilkington, Kate</creatorcontrib><creatorcontrib>Passy, Jean-Claude</creatorcontrib><creatorcontrib>Beers, Timothy C</creatorcontrib><creatorcontrib>Lugaro, Maria</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pignatari, Marco</au><au>Trueman, Thomas C L</au><au>Womack, Kate A</au><au>Gibson, Brad K</au><au>Côté, Benoit</au><au>Turrini, Diego</au><au>Sneden, Christopher</au><au>Mojzsis, Stephen J</au><au>Stancliffe, Richard J</au><au>Fong, Paul</au><au>Lawson, Thomas V</au><au>Keegans, James D</au><au>Pilkington, Kate</au><au>Passy, Jean-Claude</au><au>Beers, Timothy C</au><au>Lugaro, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The chemical evolution of the solar neighbourhood for planet-hosting stars</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-07-29</date><risdate>2023</risdate><volume>524</volume><issue>4</issue><spage>6295</spage><epage>6330</epage><pages>6295-6330</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun’s composition, that of stars in the solar neighbourhood, and of the estimated ’pristine’ compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE (Mup) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way (MW) disc is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying Mup depends on the adopted supernova yields. Thus, observations do not provide a constraint on the Mup parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1–0.2 dex in the MW disc; this modification better reproduces observations.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stad2167</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-4615-2515</orcidid><orcidid>https://orcid.org/0000-0002-1609-6938</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2023-07, Vol.524 (4), p.6295-6330 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_stad2167 |
source | Oxford Journals Open Access Collection |
title | The chemical evolution of the solar neighbourhood for planet-hosting stars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20chemical%20evolution%20of%20the%20solar%20neighbourhood%20for%20planet-hosting%20stars&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Pignatari,%20Marco&rft.date=2023-07-29&rft.volume=524&rft.issue=4&rft.spage=6295&rft.epage=6330&rft.pages=6295-6330&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad2167&rft_dat=%3Coup_TOX%3E10.1093/mnras/stad2167%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad2167&rfr_iscdi=true |