Implementation of dust particles in three-dimensional magnetohydrodynamics simulation: dust dynamics in a collapsing cloud core

ABSTRACT The aim of this study is to examine dust dynamics on a large scale and investigate the coupling of dust with gas fluid in the star formation process. We propose a method for calculating the dust trajectory in a gravitationally collapsing cloud, where the dust grains are treated as Lagrangia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-08, Vol.515 (4), p.6073-6092
Hauptverfasser: Koga, Shunta, Kawasaki, Yoshihiro, Machida, Masahiro N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6092
container_issue 4
container_start_page 6073
container_title Monthly notices of the Royal Astronomical Society
container_volume 515
creator Koga, Shunta
Kawasaki, Yoshihiro
Machida, Masahiro N
description ABSTRACT The aim of this study is to examine dust dynamics on a large scale and investigate the coupling of dust with gas fluid in the star formation process. We propose a method for calculating the dust trajectory in a gravitationally collapsing cloud, where the dust grains are treated as Lagrangian particles and are assumed to be neutral. We perform the dust trajectory calculations in combination with non-ideal magnetohydrodynamics simulation. Our simulation shows that dust particles with a size of $\le 10\, {\rm \mu m}$ are coupled with gas in a star-forming cloud core. We investigate the time evolution of the dust-to-gas mass ratio and the Stokes number, which is defined as the stopping time normalized by the freefall time-scale, and show that large dust grains ($\gtrsim 100\, {\rm \mu m}$) have a large Stokes number (close to unity) and tend to concentrate in the central region (i.e. protostar and rotationally supported disc) faster than do small grains ($\lesssim 10\, {\rm \mu m}$). Thus, large grains significantly increase the dust-to-gas mass ratio around and inside the disc. We also confirm that the dust trajectory calculations, which trace the physical quantities of each dust particle, reproduce previously reported results obtained using the Eulerian approach.
doi_str_mv 10.1093/mnras/stac2115
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stac2115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stac2115</oup_id><sourcerecordid>10.1093/mnras/stac2115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-3e13b8c9ab569e366479ebbdd1dcae8f0d80ef29301ddba4be9c4ebcd13fc11c3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqWwMntlSGvHiRuzoYpHpUosMEd-3LRGjh3ZztCJv05ogZXpSud-5xsOQreULCgRbNn7KNMyZalLSuszNKOM10UpOD9HM0JYXTQrSi_RVUofhJCKlXyGPjf94KAHn2W2wePQYTOmjAcZs9UOErYe530EKIydsDRB0uFe7jzksD-YGMzBy97qhJPtR3fU3J8kf5_JIbEOzskhWb_D2oXRTEGEa3TRSZfg5ufO0fvT49v6pdi-Pm_WD9tCMyZywYAy1WghVc0FMM6rlQCljKFGS2g6YhoCXSkYocYoWSkQugKlDWWdplSzOVqcvDqGlCJ07RBtL-OhpaT9nq89ztf-zjcV7k6FMA7_sV9Y83lt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Implementation of dust particles in three-dimensional magnetohydrodynamics simulation: dust dynamics in a collapsing cloud core</title><source>Oxford Journals Open Access Collection</source><creator>Koga, Shunta ; Kawasaki, Yoshihiro ; Machida, Masahiro N</creator><creatorcontrib>Koga, Shunta ; Kawasaki, Yoshihiro ; Machida, Masahiro N</creatorcontrib><description>ABSTRACT The aim of this study is to examine dust dynamics on a large scale and investigate the coupling of dust with gas fluid in the star formation process. We propose a method for calculating the dust trajectory in a gravitationally collapsing cloud, where the dust grains are treated as Lagrangian particles and are assumed to be neutral. We perform the dust trajectory calculations in combination with non-ideal magnetohydrodynamics simulation. Our simulation shows that dust particles with a size of $\le 10\, {\rm \mu m}$ are coupled with gas in a star-forming cloud core. We investigate the time evolution of the dust-to-gas mass ratio and the Stokes number, which is defined as the stopping time normalized by the freefall time-scale, and show that large dust grains ($\gtrsim 100\, {\rm \mu m}$) have a large Stokes number (close to unity) and tend to concentrate in the central region (i.e. protostar and rotationally supported disc) faster than do small grains ($\lesssim 10\, {\rm \mu m}$). Thus, large grains significantly increase the dust-to-gas mass ratio around and inside the disc. We also confirm that the dust trajectory calculations, which trace the physical quantities of each dust particle, reproduce previously reported results obtained using the Eulerian approach.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stac2115</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2022-08, Vol.515 (4), p.6073-6092</ispartof><rights>2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-3e13b8c9ab569e366479ebbdd1dcae8f0d80ef29301ddba4be9c4ebcd13fc11c3</citedby><cites>FETCH-LOGICAL-c339t-3e13b8c9ab569e366479ebbdd1dcae8f0d80ef29301ddba4be9c4ebcd13fc11c3</cites><orcidid>0000-0002-3493-7550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stac2115$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Koga, Shunta</creatorcontrib><creatorcontrib>Kawasaki, Yoshihiro</creatorcontrib><creatorcontrib>Machida, Masahiro N</creatorcontrib><title>Implementation of dust particles in three-dimensional magnetohydrodynamics simulation: dust dynamics in a collapsing cloud core</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT The aim of this study is to examine dust dynamics on a large scale and investigate the coupling of dust with gas fluid in the star formation process. We propose a method for calculating the dust trajectory in a gravitationally collapsing cloud, where the dust grains are treated as Lagrangian particles and are assumed to be neutral. We perform the dust trajectory calculations in combination with non-ideal magnetohydrodynamics simulation. Our simulation shows that dust particles with a size of $\le 10\, {\rm \mu m}$ are coupled with gas in a star-forming cloud core. We investigate the time evolution of the dust-to-gas mass ratio and the Stokes number, which is defined as the stopping time normalized by the freefall time-scale, and show that large dust grains ($\gtrsim 100\, {\rm \mu m}$) have a large Stokes number (close to unity) and tend to concentrate in the central region (i.e. protostar and rotationally supported disc) faster than do small grains ($\lesssim 10\, {\rm \mu m}$). Thus, large grains significantly increase the dust-to-gas mass ratio around and inside the disc. We also confirm that the dust trajectory calculations, which trace the physical quantities of each dust particle, reproduce previously reported results obtained using the Eulerian approach.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqWwMntlSGvHiRuzoYpHpUosMEd-3LRGjh3ZztCJv05ogZXpSud-5xsOQreULCgRbNn7KNMyZalLSuszNKOM10UpOD9HM0JYXTQrSi_RVUofhJCKlXyGPjf94KAHn2W2wePQYTOmjAcZs9UOErYe530EKIydsDRB0uFe7jzksD-YGMzBy97qhJPtR3fU3J8kf5_JIbEOzskhWb_D2oXRTEGEa3TRSZfg5ufO0fvT49v6pdi-Pm_WD9tCMyZywYAy1WghVc0FMM6rlQCljKFGS2g6YhoCXSkYocYoWSkQugKlDWWdplSzOVqcvDqGlCJ07RBtL-OhpaT9nq89ztf-zjcV7k6FMA7_sV9Y83lt</recordid><startdate>20220823</startdate><enddate>20220823</enddate><creator>Koga, Shunta</creator><creator>Kawasaki, Yoshihiro</creator><creator>Machida, Masahiro N</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3493-7550</orcidid></search><sort><creationdate>20220823</creationdate><title>Implementation of dust particles in three-dimensional magnetohydrodynamics simulation: dust dynamics in a collapsing cloud core</title><author>Koga, Shunta ; Kawasaki, Yoshihiro ; Machida, Masahiro N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-3e13b8c9ab569e366479ebbdd1dcae8f0d80ef29301ddba4be9c4ebcd13fc11c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koga, Shunta</creatorcontrib><creatorcontrib>Kawasaki, Yoshihiro</creatorcontrib><creatorcontrib>Machida, Masahiro N</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Koga, Shunta</au><au>Kawasaki, Yoshihiro</au><au>Machida, Masahiro N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of dust particles in three-dimensional magnetohydrodynamics simulation: dust dynamics in a collapsing cloud core</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-08-23</date><risdate>2022</risdate><volume>515</volume><issue>4</issue><spage>6073</spage><epage>6092</epage><pages>6073-6092</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT The aim of this study is to examine dust dynamics on a large scale and investigate the coupling of dust with gas fluid in the star formation process. We propose a method for calculating the dust trajectory in a gravitationally collapsing cloud, where the dust grains are treated as Lagrangian particles and are assumed to be neutral. We perform the dust trajectory calculations in combination with non-ideal magnetohydrodynamics simulation. Our simulation shows that dust particles with a size of $\le 10\, {\rm \mu m}$ are coupled with gas in a star-forming cloud core. We investigate the time evolution of the dust-to-gas mass ratio and the Stokes number, which is defined as the stopping time normalized by the freefall time-scale, and show that large dust grains ($\gtrsim 100\, {\rm \mu m}$) have a large Stokes number (close to unity) and tend to concentrate in the central region (i.e. protostar and rotationally supported disc) faster than do small grains ($\lesssim 10\, {\rm \mu m}$). Thus, large grains significantly increase the dust-to-gas mass ratio around and inside the disc. We also confirm that the dust trajectory calculations, which trace the physical quantities of each dust particle, reproduce previously reported results obtained using the Eulerian approach.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stac2115</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3493-7550</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2022-08, Vol.515 (4), p.6073-6092
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stac2115
source Oxford Journals Open Access Collection
title Implementation of dust particles in three-dimensional magnetohydrodynamics simulation: dust dynamics in a collapsing cloud core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20dust%20particles%20in%20three-dimensional%20magnetohydrodynamics%20simulation:%20dust%20dynamics%20in%20a%20collapsing%20cloud%20core&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Koga,%20Shunta&rft.date=2022-08-23&rft.volume=515&rft.issue=4&rft.spage=6073&rft.epage=6092&rft.pages=6073-6092&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stac2115&rft_dat=%3Coup_TOX%3E10.1093/mnras/stac2115%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stac2115&rfr_iscdi=true