PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars

ABSTRACT We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-07, Vol.514 (3), p.4489-4505
Hauptverfasser: Murakami, Yukei S, Jennings, Connor, Hoffman, Andrew M, Savel, Arjun B, Sunseri, James, Baer-Way, Raphael, Stahl, Benjamin E, Altunin, Ivan, Girish, Nachiket, Filippenko, Alexei V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4505
container_issue 3
container_start_page 4489
container_title Monthly notices of the Royal Astronomical Society
container_volume 514
creator Murakami, Yukei S
Jennings, Connor
Hoffman, Andrew M
Savel, Arjun B
Sunseri, James
Baer-Way, Raphael
Stahl, Benjamin E
Altunin, Ivan
Girish, Nachiket
Filippenko, Alexei V
description ABSTRACT We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customizable framework for automated, robust period measurements with principled uncertainties and statistical significance calculations. In addition to detailing the general algorithm that underlies PIPS, this paper discusses one of PIPS’ central and novel features, the Fourier-likelihood periodogram, and compares its performance to existing methods. The resulting improved performance implies that one can construct deeper, larger, and more reliable sets of derived properties from various observations, including all-sky surveys. We present a comprehensive validation of PIPS against artificially generated data, which demonstrates the reliable performance of our algorithm for a class of periodic variable stars (RR Lyrae stars).
doi_str_mv 10.1093/mnras/stac1538
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stac1538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stac1538</oup_id><sourcerecordid>10.1093/mnras/stac1538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-a09266d5f558160ca3767c1e72f915bdd85fccf92d5b73cd8afe830252de0d5f3</originalsourceid><addsrcrecordid>eNqFkLtOAzEQRS0EEiHQUrtFYhM_sHe3RBGPSJGIeNSriR9g2F2vbIOUjoof4A_5EkwCNc2MRnfOKS5Cx5RMKKn5tOsDxGlMoKjg1Q4aUS5FwWopd9GIEC6KqqR0Hx3E-EwIOeNMjtDHcr68O8XQY9Bv0Cuj8dBCsj50OA88mOC8xtoko5LzPXY9Tq4zOObARPz1_onnE3zpX_MZita9mNY9-YxsSf8YoMt6jWEYWqdgI0ke397ixTpAFiUI8RDtWWijOfrdY_RweXE_uy4WN1fz2fmiUKzkqQBSMym1sEJUVBIFvJSloqZktqZipXUlrFK2ZlqsSq50BdZUnDDBtCEZ42M02XpV8DEGY5shuA7CuqGk-Wmx2bTY_LWYgZMt4F-H_36_AWLzeRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars</title><source>Oxford Journals Open Access Collection</source><creator>Murakami, Yukei S ; Jennings, Connor ; Hoffman, Andrew M ; Savel, Arjun B ; Sunseri, James ; Baer-Way, Raphael ; Stahl, Benjamin E ; Altunin, Ivan ; Girish, Nachiket ; Filippenko, Alexei V</creator><creatorcontrib>Murakami, Yukei S ; Jennings, Connor ; Hoffman, Andrew M ; Savel, Arjun B ; Sunseri, James ; Baer-Way, Raphael ; Stahl, Benjamin E ; Altunin, Ivan ; Girish, Nachiket ; Filippenko, Alexei V</creatorcontrib><description>ABSTRACT We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customizable framework for automated, robust period measurements with principled uncertainties and statistical significance calculations. In addition to detailing the general algorithm that underlies PIPS, this paper discusses one of PIPS’ central and novel features, the Fourier-likelihood periodogram, and compares its performance to existing methods. The resulting improved performance implies that one can construct deeper, larger, and more reliable sets of derived properties from various observations, including all-sky surveys. We present a comprehensive validation of PIPS against artificially generated data, which demonstrates the reliable performance of our algorithm for a class of periodic variable stars (RR Lyrae stars).</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stac1538</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2022-07, Vol.514 (3), p.4489-4505</ispartof><rights>2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-a09266d5f558160ca3767c1e72f915bdd85fccf92d5b73cd8afe830252de0d5f3</citedby><cites>FETCH-LOGICAL-c273t-a09266d5f558160ca3767c1e72f915bdd85fccf92d5b73cd8afe830252de0d5f3</cites><orcidid>0000-0002-8342-3804 ; 0000-0002-3169-3167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stac1538$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Murakami, Yukei S</creatorcontrib><creatorcontrib>Jennings, Connor</creatorcontrib><creatorcontrib>Hoffman, Andrew M</creatorcontrib><creatorcontrib>Savel, Arjun B</creatorcontrib><creatorcontrib>Sunseri, James</creatorcontrib><creatorcontrib>Baer-Way, Raphael</creatorcontrib><creatorcontrib>Stahl, Benjamin E</creatorcontrib><creatorcontrib>Altunin, Ivan</creatorcontrib><creatorcontrib>Girish, Nachiket</creatorcontrib><creatorcontrib>Filippenko, Alexei V</creatorcontrib><title>PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customizable framework for automated, robust period measurements with principled uncertainties and statistical significance calculations. In addition to detailing the general algorithm that underlies PIPS, this paper discusses one of PIPS’ central and novel features, the Fourier-likelihood periodogram, and compares its performance to existing methods. The resulting improved performance implies that one can construct deeper, larger, and more reliable sets of derived properties from various observations, including all-sky surveys. We present a comprehensive validation of PIPS against artificially generated data, which demonstrates the reliable performance of our algorithm for a class of periodic variable stars (RR Lyrae stars).</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAzEQRS0EEiHQUrtFYhM_sHe3RBGPSJGIeNSriR9g2F2vbIOUjoof4A_5EkwCNc2MRnfOKS5Cx5RMKKn5tOsDxGlMoKjg1Q4aUS5FwWopd9GIEC6KqqR0Hx3E-EwIOeNMjtDHcr68O8XQY9Bv0Cuj8dBCsj50OA88mOC8xtoko5LzPXY9Tq4zOObARPz1_onnE3zpX_MZita9mNY9-YxsSf8YoMt6jWEYWqdgI0ke397ixTpAFiUI8RDtWWijOfrdY_RweXE_uy4WN1fz2fmiUKzkqQBSMym1sEJUVBIFvJSloqZktqZipXUlrFK2ZlqsSq50BdZUnDDBtCEZ42M02XpV8DEGY5shuA7CuqGk-Wmx2bTY_LWYgZMt4F-H_36_AWLzeRI</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Murakami, Yukei S</creator><creator>Jennings, Connor</creator><creator>Hoffman, Andrew M</creator><creator>Savel, Arjun B</creator><creator>Sunseri, James</creator><creator>Baer-Way, Raphael</creator><creator>Stahl, Benjamin E</creator><creator>Altunin, Ivan</creator><creator>Girish, Nachiket</creator><creator>Filippenko, Alexei V</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8342-3804</orcidid><orcidid>https://orcid.org/0000-0002-3169-3167</orcidid></search><sort><creationdate>20220701</creationdate><title>PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars</title><author>Murakami, Yukei S ; Jennings, Connor ; Hoffman, Andrew M ; Savel, Arjun B ; Sunseri, James ; Baer-Way, Raphael ; Stahl, Benjamin E ; Altunin, Ivan ; Girish, Nachiket ; Filippenko, Alexei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-a09266d5f558160ca3767c1e72f915bdd85fccf92d5b73cd8afe830252de0d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murakami, Yukei S</creatorcontrib><creatorcontrib>Jennings, Connor</creatorcontrib><creatorcontrib>Hoffman, Andrew M</creatorcontrib><creatorcontrib>Savel, Arjun B</creatorcontrib><creatorcontrib>Sunseri, James</creatorcontrib><creatorcontrib>Baer-Way, Raphael</creatorcontrib><creatorcontrib>Stahl, Benjamin E</creatorcontrib><creatorcontrib>Altunin, Ivan</creatorcontrib><creatorcontrib>Girish, Nachiket</creatorcontrib><creatorcontrib>Filippenko, Alexei V</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murakami, Yukei S</au><au>Jennings, Connor</au><au>Hoffman, Andrew M</au><au>Savel, Arjun B</au><au>Sunseri, James</au><au>Baer-Way, Raphael</au><au>Stahl, Benjamin E</au><au>Altunin, Ivan</au><au>Girish, Nachiket</au><au>Filippenko, Alexei V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>514</volume><issue>3</issue><spage>4489</spage><epage>4505</epage><pages>4489-4505</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customizable framework for automated, robust period measurements with principled uncertainties and statistical significance calculations. In addition to detailing the general algorithm that underlies PIPS, this paper discusses one of PIPS’ central and novel features, the Fourier-likelihood periodogram, and compares its performance to existing methods. The resulting improved performance implies that one can construct deeper, larger, and more reliable sets of derived properties from various observations, including all-sky surveys. We present a comprehensive validation of PIPS against artificially generated data, which demonstrates the reliable performance of our algorithm for a class of periodic variable stars (RR Lyrae stars).</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stac1538</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8342-3804</orcidid><orcidid>https://orcid.org/0000-0002-3169-3167</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2022-07, Vol.514 (3), p.4489-4505
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stac1538
source Oxford Journals Open Access Collection
title PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PIPS,%20an%20advanced%20platform%20for%20period%20detection%20in%20time%20series%20%E2%80%93%20I.%20Fourier-likelihood%20periodogram%20and%20application%20to%20RR%20Lyrae%20stars&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Murakami,%20Yukei%20S&rft.date=2022-07-01&rft.volume=514&rft.issue=3&rft.spage=4489&rft.epage=4505&rft.pages=4489-4505&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stac1538&rft_dat=%3Coup_TOX%3E10.1093/mnras/stac1538%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stac1538&rfr_iscdi=true