PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars
ABSTRACT We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customiza...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2022-07, Vol.514 (3), p.4489-4505 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4505 |
---|---|
container_issue | 3 |
container_start_page | 4489 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 514 |
creator | Murakami, Yukei S Jennings, Connor Hoffman, Andrew M Savel, Arjun B Sunseri, James Baer-Way, Raphael Stahl, Benjamin E Altunin, Ivan Girish, Nachiket Filippenko, Alexei V |
description | ABSTRACT
We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customizable framework for automated, robust period measurements with principled uncertainties and statistical significance calculations. In addition to detailing the general algorithm that underlies PIPS, this paper discusses one of PIPS’ central and novel features, the Fourier-likelihood periodogram, and compares its performance to existing methods. The resulting improved performance implies that one can construct deeper, larger, and more reliable sets of derived properties from various observations, including all-sky surveys. We present a comprehensive validation of PIPS against artificially generated data, which demonstrates the reliable performance of our algorithm for a class of periodic variable stars (RR Lyrae stars). |
doi_str_mv | 10.1093/mnras/stac1538 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stac1538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stac1538</oup_id><sourcerecordid>10.1093/mnras/stac1538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-a09266d5f558160ca3767c1e72f915bdd85fccf92d5b73cd8afe830252de0d5f3</originalsourceid><addsrcrecordid>eNqFkLtOAzEQRS0EEiHQUrtFYhM_sHe3RBGPSJGIeNSriR9g2F2vbIOUjoof4A_5EkwCNc2MRnfOKS5Cx5RMKKn5tOsDxGlMoKjg1Q4aUS5FwWopd9GIEC6KqqR0Hx3E-EwIOeNMjtDHcr68O8XQY9Bv0Cuj8dBCsj50OA88mOC8xtoko5LzPXY9Tq4zOObARPz1_onnE3zpX_MZita9mNY9-YxsSf8YoMt6jWEYWqdgI0ke397ixTpAFiUI8RDtWWijOfrdY_RweXE_uy4WN1fz2fmiUKzkqQBSMym1sEJUVBIFvJSloqZktqZipXUlrFK2ZlqsSq50BdZUnDDBtCEZ42M02XpV8DEGY5shuA7CuqGk-Wmx2bTY_LWYgZMt4F-H_36_AWLzeRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars</title><source>Oxford Journals Open Access Collection</source><creator>Murakami, Yukei S ; Jennings, Connor ; Hoffman, Andrew M ; Savel, Arjun B ; Sunseri, James ; Baer-Way, Raphael ; Stahl, Benjamin E ; Altunin, Ivan ; Girish, Nachiket ; Filippenko, Alexei V</creator><creatorcontrib>Murakami, Yukei S ; Jennings, Connor ; Hoffman, Andrew M ; Savel, Arjun B ; Sunseri, James ; Baer-Way, Raphael ; Stahl, Benjamin E ; Altunin, Ivan ; Girish, Nachiket ; Filippenko, Alexei V</creatorcontrib><description>ABSTRACT
We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customizable framework for automated, robust period measurements with principled uncertainties and statistical significance calculations. In addition to detailing the general algorithm that underlies PIPS, this paper discusses one of PIPS’ central and novel features, the Fourier-likelihood periodogram, and compares its performance to existing methods. The resulting improved performance implies that one can construct deeper, larger, and more reliable sets of derived properties from various observations, including all-sky surveys. We present a comprehensive validation of PIPS against artificially generated data, which demonstrates the reliable performance of our algorithm for a class of periodic variable stars (RR Lyrae stars).</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stac1538</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2022-07, Vol.514 (3), p.4489-4505</ispartof><rights>2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-a09266d5f558160ca3767c1e72f915bdd85fccf92d5b73cd8afe830252de0d5f3</citedby><cites>FETCH-LOGICAL-c273t-a09266d5f558160ca3767c1e72f915bdd85fccf92d5b73cd8afe830252de0d5f3</cites><orcidid>0000-0002-8342-3804 ; 0000-0002-3169-3167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stac1538$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Murakami, Yukei S</creatorcontrib><creatorcontrib>Jennings, Connor</creatorcontrib><creatorcontrib>Hoffman, Andrew M</creatorcontrib><creatorcontrib>Savel, Arjun B</creatorcontrib><creatorcontrib>Sunseri, James</creatorcontrib><creatorcontrib>Baer-Way, Raphael</creatorcontrib><creatorcontrib>Stahl, Benjamin E</creatorcontrib><creatorcontrib>Altunin, Ivan</creatorcontrib><creatorcontrib>Girish, Nachiket</creatorcontrib><creatorcontrib>Filippenko, Alexei V</creatorcontrib><title>PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customizable framework for automated, robust period measurements with principled uncertainties and statistical significance calculations. In addition to detailing the general algorithm that underlies PIPS, this paper discusses one of PIPS’ central and novel features, the Fourier-likelihood periodogram, and compares its performance to existing methods. The resulting improved performance implies that one can construct deeper, larger, and more reliable sets of derived properties from various observations, including all-sky surveys. We present a comprehensive validation of PIPS against artificially generated data, which demonstrates the reliable performance of our algorithm for a class of periodic variable stars (RR Lyrae stars).</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAzEQRS0EEiHQUrtFYhM_sHe3RBGPSJGIeNSriR9g2F2vbIOUjoof4A_5EkwCNc2MRnfOKS5Cx5RMKKn5tOsDxGlMoKjg1Q4aUS5FwWopd9GIEC6KqqR0Hx3E-EwIOeNMjtDHcr68O8XQY9Bv0Cuj8dBCsj50OA88mOC8xtoko5LzPXY9Tq4zOObARPz1_onnE3zpX_MZita9mNY9-YxsSf8YoMt6jWEYWqdgI0ke397ixTpAFiUI8RDtWWijOfrdY_RweXE_uy4WN1fz2fmiUKzkqQBSMym1sEJUVBIFvJSloqZktqZipXUlrFK2ZlqsSq50BdZUnDDBtCEZ42M02XpV8DEGY5shuA7CuqGk-Wmx2bTY_LWYgZMt4F-H_36_AWLzeRI</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Murakami, Yukei S</creator><creator>Jennings, Connor</creator><creator>Hoffman, Andrew M</creator><creator>Savel, Arjun B</creator><creator>Sunseri, James</creator><creator>Baer-Way, Raphael</creator><creator>Stahl, Benjamin E</creator><creator>Altunin, Ivan</creator><creator>Girish, Nachiket</creator><creator>Filippenko, Alexei V</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8342-3804</orcidid><orcidid>https://orcid.org/0000-0002-3169-3167</orcidid></search><sort><creationdate>20220701</creationdate><title>PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars</title><author>Murakami, Yukei S ; Jennings, Connor ; Hoffman, Andrew M ; Savel, Arjun B ; Sunseri, James ; Baer-Way, Raphael ; Stahl, Benjamin E ; Altunin, Ivan ; Girish, Nachiket ; Filippenko, Alexei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-a09266d5f558160ca3767c1e72f915bdd85fccf92d5b73cd8afe830252de0d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murakami, Yukei S</creatorcontrib><creatorcontrib>Jennings, Connor</creatorcontrib><creatorcontrib>Hoffman, Andrew M</creatorcontrib><creatorcontrib>Savel, Arjun B</creatorcontrib><creatorcontrib>Sunseri, James</creatorcontrib><creatorcontrib>Baer-Way, Raphael</creatorcontrib><creatorcontrib>Stahl, Benjamin E</creatorcontrib><creatorcontrib>Altunin, Ivan</creatorcontrib><creatorcontrib>Girish, Nachiket</creatorcontrib><creatorcontrib>Filippenko, Alexei V</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murakami, Yukei S</au><au>Jennings, Connor</au><au>Hoffman, Andrew M</au><au>Savel, Arjun B</au><au>Sunseri, James</au><au>Baer-Way, Raphael</au><au>Stahl, Benjamin E</au><au>Altunin, Ivan</au><au>Girish, Nachiket</au><au>Filippenko, Alexei V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>514</volume><issue>3</issue><spage>4489</spage><epage>4505</epage><pages>4489-4505</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
We describe the Period detection and Identification Pipeline Suite (pips) – a new, fast, and statistically robust platform for period detection and analysis of astrophysical time-series data. PIPS is an open-source Python package that provides various pre-implemented methods and a customizable framework for automated, robust period measurements with principled uncertainties and statistical significance calculations. In addition to detailing the general algorithm that underlies PIPS, this paper discusses one of PIPS’ central and novel features, the Fourier-likelihood periodogram, and compares its performance to existing methods. The resulting improved performance implies that one can construct deeper, larger, and more reliable sets of derived properties from various observations, including all-sky surveys. We present a comprehensive validation of PIPS against artificially generated data, which demonstrates the reliable performance of our algorithm for a class of periodic variable stars (RR Lyrae stars).</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stac1538</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8342-3804</orcidid><orcidid>https://orcid.org/0000-0002-3169-3167</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2022-07, Vol.514 (3), p.4489-4505 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_stac1538 |
source | Oxford Journals Open Access Collection |
title | PIPS, an advanced platform for period detection in time series – I. Fourier-likelihood periodogram and application to RR Lyrae stars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PIPS,%20an%20advanced%20platform%20for%20period%20detection%20in%20time%20series%20%E2%80%93%20I.%20Fourier-likelihood%20periodogram%20and%20application%20to%20RR%20Lyrae%20stars&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Murakami,%20Yukei%20S&rft.date=2022-07-01&rft.volume=514&rft.issue=3&rft.spage=4489&rft.epage=4505&rft.pages=4489-4505&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stac1538&rft_dat=%3Coup_TOX%3E10.1093/mnras/stac1538%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stac1538&rfr_iscdi=true |