Structured variational inference for simulating populations of radio galaxies
ABSTRACT We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to im...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2021-05, Vol.503 (3), p.3351-3370 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3370 |
---|---|
container_issue | 3 |
container_start_page | 3351 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 503 |
creator | Bastien, David J Scaife, Anna M M Tang, Hongming Bowles, Micah Porter, Fiona |
description | ABSTRACT
We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to implement structured variational inference through a variational autoencoder and decoder architecture. In order to optimize the dimensionality of the latent space for the autoencoder, we introduce the radio morphology inception score (RAMIS), a quantitative method for assessing the quality of generated images, and discuss in detail how data pre-processing choices can affect the value of this measure. We examine the 2D latent space of the VAEs and discuss how this can be used to control the generation of synthetic populations, whilst also cautioning how it may lead to biases when used for data augmentation. |
doi_str_mv | 10.1093/mnras/stab588 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab588</oup_id><sourcerecordid>10.1093/mnras/stab588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-86e4f94be14769a9695889eeef8dc017c07df6b07dc94862b9b87e85090727173</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoWFeP3nP0EnfSj3wcZfELVjyo55KmkyXSNiVpRf-9dXfvXmYG5uHl5SHkmsMtB12s-yGatE6TaSqlTkjGC1GxXAtxSjKAomJKcn5OLlL6BICyyEVGXt6mONtpjtjSLxO9mXwYTEf94DDiYJG6EGny_dwtr2FHxzDuzzAkGhyNpvWB7kxnvj2mS3LmTJfw6rhX5OPh_n3zxLavj8-buy2zuYSJKYGl02WDvJRCGy30UlgjolOtBS4tyNaJZplWl0rkjW6URFWBBplLLosVYYdcG0NKEV09Rt-b-FNzqP9c1HsX9dHFwt8c-DCP_6C_f0lj2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structured variational inference for simulating populations of radio galaxies</title><source>Oxford Journals Open Access Collection</source><creator>Bastien, David J ; Scaife, Anna M M ; Tang, Hongming ; Bowles, Micah ; Porter, Fiona</creator><creatorcontrib>Bastien, David J ; Scaife, Anna M M ; Tang, Hongming ; Bowles, Micah ; Porter, Fiona</creatorcontrib><description>ABSTRACT
We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to implement structured variational inference through a variational autoencoder and decoder architecture. In order to optimize the dimensionality of the latent space for the autoencoder, we introduce the radio morphology inception score (RAMIS), a quantitative method for assessing the quality of generated images, and discuss in detail how data pre-processing choices can affect the value of this measure. We examine the 2D latent space of the VAEs and discuss how this can be used to control the generation of synthetic populations, whilst also cautioning how it may lead to biases when used for data augmentation.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab588</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2021-05, Vol.503 (3), p.3351-3370</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-86e4f94be14769a9695889eeef8dc017c07df6b07dc94862b9b87e85090727173</citedby><cites>FETCH-LOGICAL-c270t-86e4f94be14769a9695889eeef8dc017c07df6b07dc94862b9b87e85090727173</cites><orcidid>0000-0001-5838-8405 ; 0000-0002-7300-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab588$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Bastien, David J</creatorcontrib><creatorcontrib>Scaife, Anna M M</creatorcontrib><creatorcontrib>Tang, Hongming</creatorcontrib><creatorcontrib>Bowles, Micah</creatorcontrib><creatorcontrib>Porter, Fiona</creatorcontrib><title>Structured variational inference for simulating populations of radio galaxies</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to implement structured variational inference through a variational autoencoder and decoder architecture. In order to optimize the dimensionality of the latent space for the autoencoder, we introduce the radio morphology inception score (RAMIS), a quantitative method for assessing the quality of generated images, and discuss in detail how data pre-processing choices can affect the value of this measure. We examine the 2D latent space of the VAEs and discuss how this can be used to control the generation of synthetic populations, whilst also cautioning how it may lead to biases when used for data augmentation.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMoWFeP3nP0EnfSj3wcZfELVjyo55KmkyXSNiVpRf-9dXfvXmYG5uHl5SHkmsMtB12s-yGatE6TaSqlTkjGC1GxXAtxSjKAomJKcn5OLlL6BICyyEVGXt6mONtpjtjSLxO9mXwYTEf94DDiYJG6EGny_dwtr2FHxzDuzzAkGhyNpvWB7kxnvj2mS3LmTJfw6rhX5OPh_n3zxLavj8-buy2zuYSJKYGl02WDvJRCGy30UlgjolOtBS4tyNaJZplWl0rkjW6URFWBBplLLosVYYdcG0NKEV09Rt-b-FNzqP9c1HsX9dHFwt8c-DCP_6C_f0lj2w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Bastien, David J</creator><creator>Scaife, Anna M M</creator><creator>Tang, Hongming</creator><creator>Bowles, Micah</creator><creator>Porter, Fiona</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5838-8405</orcidid><orcidid>https://orcid.org/0000-0002-7300-9239</orcidid></search><sort><creationdate>20210501</creationdate><title>Structured variational inference for simulating populations of radio galaxies</title><author>Bastien, David J ; Scaife, Anna M M ; Tang, Hongming ; Bowles, Micah ; Porter, Fiona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-86e4f94be14769a9695889eeef8dc017c07df6b07dc94862b9b87e85090727173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastien, David J</creatorcontrib><creatorcontrib>Scaife, Anna M M</creatorcontrib><creatorcontrib>Tang, Hongming</creatorcontrib><creatorcontrib>Bowles, Micah</creatorcontrib><creatorcontrib>Porter, Fiona</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bastien, David J</au><au>Scaife, Anna M M</au><au>Tang, Hongming</au><au>Bowles, Micah</au><au>Porter, Fiona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structured variational inference for simulating populations of radio galaxies</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>503</volume><issue>3</issue><spage>3351</spage><epage>3370</epage><pages>3351-3370</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to implement structured variational inference through a variational autoencoder and decoder architecture. In order to optimize the dimensionality of the latent space for the autoencoder, we introduce the radio morphology inception score (RAMIS), a quantitative method for assessing the quality of generated images, and discuss in detail how data pre-processing choices can affect the value of this measure. We examine the 2D latent space of the VAEs and discuss how this can be used to control the generation of synthetic populations, whilst also cautioning how it may lead to biases when used for data augmentation.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab588</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5838-8405</orcidid><orcidid>https://orcid.org/0000-0002-7300-9239</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2021-05, Vol.503 (3), p.3351-3370 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_stab588 |
source | Oxford Journals Open Access Collection |
title | Structured variational inference for simulating populations of radio galaxies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structured%20variational%20inference%20for%20simulating%20populations%20of%20radio%20galaxies&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Bastien,%20David%20J&rft.date=2021-05-01&rft.volume=503&rft.issue=3&rft.spage=3351&rft.epage=3370&rft.pages=3351-3370&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab588&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab588%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab588&rfr_iscdi=true |