Structured variational inference for simulating populations of radio galaxies

ABSTRACT We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-05, Vol.503 (3), p.3351-3370
Hauptverfasser: Bastien, David J, Scaife, Anna M M, Tang, Hongming, Bowles, Micah, Porter, Fiona
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3370
container_issue 3
container_start_page 3351
container_title Monthly notices of the Royal Astronomical Society
container_volume 503
creator Bastien, David J
Scaife, Anna M M
Tang, Hongming
Bowles, Micah
Porter, Fiona
description ABSTRACT We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to implement structured variational inference through a variational autoencoder and decoder architecture. In order to optimize the dimensionality of the latent space for the autoencoder, we introduce the radio morphology inception score (RAMIS), a quantitative method for assessing the quality of generated images, and discuss in detail how data pre-processing choices can affect the value of this measure. We examine the 2D latent space of the VAEs and discuss how this can be used to control the generation of synthetic populations, whilst also cautioning how it may lead to biases when used for data augmentation.
doi_str_mv 10.1093/mnras/stab588
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab588</oup_id><sourcerecordid>10.1093/mnras/stab588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-86e4f94be14769a9695889eeef8dc017c07df6b07dc94862b9b87e85090727173</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMoWFeP3nP0EnfSj3wcZfELVjyo55KmkyXSNiVpRf-9dXfvXmYG5uHl5SHkmsMtB12s-yGatE6TaSqlTkjGC1GxXAtxSjKAomJKcn5OLlL6BICyyEVGXt6mONtpjtjSLxO9mXwYTEf94DDiYJG6EGny_dwtr2FHxzDuzzAkGhyNpvWB7kxnvj2mS3LmTJfw6rhX5OPh_n3zxLavj8-buy2zuYSJKYGl02WDvJRCGy30UlgjolOtBS4tyNaJZplWl0rkjW6URFWBBplLLosVYYdcG0NKEV09Rt-b-FNzqP9c1HsX9dHFwt8c-DCP_6C_f0lj2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structured variational inference for simulating populations of radio galaxies</title><source>Oxford Journals Open Access Collection</source><creator>Bastien, David J ; Scaife, Anna M M ; Tang, Hongming ; Bowles, Micah ; Porter, Fiona</creator><creatorcontrib>Bastien, David J ; Scaife, Anna M M ; Tang, Hongming ; Bowles, Micah ; Porter, Fiona</creatorcontrib><description>ABSTRACT We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to implement structured variational inference through a variational autoencoder and decoder architecture. In order to optimize the dimensionality of the latent space for the autoencoder, we introduce the radio morphology inception score (RAMIS), a quantitative method for assessing the quality of generated images, and discuss in detail how data pre-processing choices can affect the value of this measure. We examine the 2D latent space of the VAEs and discuss how this can be used to control the generation of synthetic populations, whilst also cautioning how it may lead to biases when used for data augmentation.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab588</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2021-05, Vol.503 (3), p.3351-3370</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-86e4f94be14769a9695889eeef8dc017c07df6b07dc94862b9b87e85090727173</citedby><cites>FETCH-LOGICAL-c270t-86e4f94be14769a9695889eeef8dc017c07df6b07dc94862b9b87e85090727173</cites><orcidid>0000-0001-5838-8405 ; 0000-0002-7300-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab588$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Bastien, David J</creatorcontrib><creatorcontrib>Scaife, Anna M M</creatorcontrib><creatorcontrib>Tang, Hongming</creatorcontrib><creatorcontrib>Bowles, Micah</creatorcontrib><creatorcontrib>Porter, Fiona</creatorcontrib><title>Structured variational inference for simulating populations of radio galaxies</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to implement structured variational inference through a variational autoencoder and decoder architecture. In order to optimize the dimensionality of the latent space for the autoencoder, we introduce the radio morphology inception score (RAMIS), a quantitative method for assessing the quality of generated images, and discuss in detail how data pre-processing choices can affect the value of this measure. We examine the 2D latent space of the VAEs and discuss how this can be used to control the generation of synthetic populations, whilst also cautioning how it may lead to biases when used for data augmentation.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMoWFeP3nP0EnfSj3wcZfELVjyo55KmkyXSNiVpRf-9dXfvXmYG5uHl5SHkmsMtB12s-yGatE6TaSqlTkjGC1GxXAtxSjKAomJKcn5OLlL6BICyyEVGXt6mONtpjtjSLxO9mXwYTEf94DDiYJG6EGny_dwtr2FHxzDuzzAkGhyNpvWB7kxnvj2mS3LmTJfw6rhX5OPh_n3zxLavj8-buy2zuYSJKYGl02WDvJRCGy30UlgjolOtBS4tyNaJZplWl0rkjW6URFWBBplLLosVYYdcG0NKEV09Rt-b-FNzqP9c1HsX9dHFwt8c-DCP_6C_f0lj2w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Bastien, David J</creator><creator>Scaife, Anna M M</creator><creator>Tang, Hongming</creator><creator>Bowles, Micah</creator><creator>Porter, Fiona</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5838-8405</orcidid><orcidid>https://orcid.org/0000-0002-7300-9239</orcidid></search><sort><creationdate>20210501</creationdate><title>Structured variational inference for simulating populations of radio galaxies</title><author>Bastien, David J ; Scaife, Anna M M ; Tang, Hongming ; Bowles, Micah ; Porter, Fiona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-86e4f94be14769a9695889eeef8dc017c07df6b07dc94862b9b87e85090727173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastien, David J</creatorcontrib><creatorcontrib>Scaife, Anna M M</creatorcontrib><creatorcontrib>Tang, Hongming</creatorcontrib><creatorcontrib>Bowles, Micah</creatorcontrib><creatorcontrib>Porter, Fiona</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bastien, David J</au><au>Scaife, Anna M M</au><au>Tang, Hongming</au><au>Bowles, Micah</au><au>Porter, Fiona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structured variational inference for simulating populations of radio galaxies</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>503</volume><issue>3</issue><spage>3351</spage><epage>3370</epage><pages>3351-3370</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT We present a model for generating postage stamp images of synthetic Fanaroff–Riley Class I and Class II radio galaxies suitable for use in simulations of future radio surveys such as those being developed for the Square Kilometre Array. This model uses a fully connected neural network to implement structured variational inference through a variational autoencoder and decoder architecture. In order to optimize the dimensionality of the latent space for the autoencoder, we introduce the radio morphology inception score (RAMIS), a quantitative method for assessing the quality of generated images, and discuss in detail how data pre-processing choices can affect the value of this measure. We examine the 2D latent space of the VAEs and discuss how this can be used to control the generation of synthetic populations, whilst also cautioning how it may lead to biases when used for data augmentation.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab588</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5838-8405</orcidid><orcidid>https://orcid.org/0000-0002-7300-9239</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2021-05, Vol.503 (3), p.3351-3370
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stab588
source Oxford Journals Open Access Collection
title Structured variational inference for simulating populations of radio galaxies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structured%20variational%20inference%20for%20simulating%20populations%20of%20radio%20galaxies&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Bastien,%20David%20J&rft.date=2021-05-01&rft.volume=503&rft.issue=3&rft.spage=3351&rft.epage=3370&rft.pages=3351-3370&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab588&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab588%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab588&rfr_iscdi=true