Nucleosynthesis signatures of neutrino-driven winds from proto-neutron stars: a perspective from chemical evolution models
ABSTRACT We test the hypothesis that the observed first-peak (Sr, Y, Zr) and second-peak (Ba) s-process elemental abundances in low-metallicity Milky Way stars, and the abundances of the elements Mo and Ru, can be explained by a pervasive r-process contribution originating in neutrino-driven winds f...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2021-12, Vol.508 (3), p.3499-3507 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3507 |
---|---|
container_issue | 3 |
container_start_page | 3499 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 508 |
creator | Vincenzo, Fiorenzo Thompson, Todd A Weinberg, David H Griffith, Emily J Johnson, James W Johnson, Jennifer A |
description | ABSTRACT
We test the hypothesis that the observed first-peak (Sr, Y, Zr) and second-peak (Ba) s-process elemental abundances in low-metallicity Milky Way stars, and the abundances of the elements Mo and Ru, can be explained by a pervasive r-process contribution originating in neutrino-driven winds from highly magnetic and rapidly rotating proto-neutron stars (proto-NSs). We construct chemical evolution models that incorporate recent calculations of proto-NS yields in addition to contributions from asymptotic giant branch stars, Type Ia supernovae, and two alternative sets of yields for massive star winds and core-collapse supernovae. For non-rotating massive star yields from either set, models without proto-NS winds underpredict the observed s-process peak abundances by 0.3–$1\, \text{dex}$ at low metallicity, and they severely underpredict Mo and Ru at all metallicities. Models incorporating wind yields from proto-NSs with spin periods P ∼ 2–$5\, \text{ms}$ fit the observed trends for all these elements well. Alternatively, models omitting proto-NS winds but adopting yields of rapidly rotating massive stars, with vrot between 150 and $300\, \text{km}\, \text{s}^{-1}$, can explain the observed abundance levels reasonably well for [Fe/H] < −2. These models overpredict [Sr/Fe] and [Mo/Fe] at higher metallicities, but with a tuned dependence of vrot on stellar metallicity they might achieve an acceptable fit at all [Fe/H]. If many proto-NSs are born with strong magnetic fields and short spin periods, then their neutrino-driven winds provide a natural source for Sr, Y, Zr, Mo, Ru, and Ba in low-metallicity stellar populations. Conversely, spherical winds from unmagnetized proto-NSs overproduce the observed Sr, Y, and Zr abundances by a large factor. |
doi_str_mv | 10.1093/mnras/stab2828 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab2828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab2828</oup_id><sourcerecordid>10.1093/mnras/stab2828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-27e012de7c2c8ee8123ea8f6fc3a643a496ed2d6177e792ab8dd3147652b4c553</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqWwMntlCPUjcRI2VPGSKlhgjlz7hholduTrFJVfT2hhZjrLd86RPkIuObvmrJaL3keNC0x6LSpRHZEZl6rIRK3UMZkxJousKjk_JWeIH4yxXAo1I1_Po-kg4M6nDaBDiu7d6zRGQBpa6mFM0fmQ2ei24Omn8xZpG0NPhxhSyPZA8HS6jXhDNR0g4gAmTfiBMxvondEdhW3oxuQmuA8WOjwnJ63uEC5-c07e7u9el4_Z6uXhaXm7yoyUdcpECYwLC6URpgKouJCgq1a1RmqVS53XCqywipcllLXQ68payfNSFWKdm6KQc3J92DUxIEZomyG6Xsddw1nzY67Zm2v-zE2Fq0MhjMN_7Dd2gHZy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nucleosynthesis signatures of neutrino-driven winds from proto-neutron stars: a perspective from chemical evolution models</title><source>Oxford Journals Open Access Collection</source><creator>Vincenzo, Fiorenzo ; Thompson, Todd A ; Weinberg, David H ; Griffith, Emily J ; Johnson, James W ; Johnson, Jennifer A</creator><creatorcontrib>Vincenzo, Fiorenzo ; Thompson, Todd A ; Weinberg, David H ; Griffith, Emily J ; Johnson, James W ; Johnson, Jennifer A</creatorcontrib><description>ABSTRACT
We test the hypothesis that the observed first-peak (Sr, Y, Zr) and second-peak (Ba) s-process elemental abundances in low-metallicity Milky Way stars, and the abundances of the elements Mo and Ru, can be explained by a pervasive r-process contribution originating in neutrino-driven winds from highly magnetic and rapidly rotating proto-neutron stars (proto-NSs). We construct chemical evolution models that incorporate recent calculations of proto-NS yields in addition to contributions from asymptotic giant branch stars, Type Ia supernovae, and two alternative sets of yields for massive star winds and core-collapse supernovae. For non-rotating massive star yields from either set, models without proto-NS winds underpredict the observed s-process peak abundances by 0.3–$1\, \text{dex}$ at low metallicity, and they severely underpredict Mo and Ru at all metallicities. Models incorporating wind yields from proto-NSs with spin periods P ∼ 2–$5\, \text{ms}$ fit the observed trends for all these elements well. Alternatively, models omitting proto-NS winds but adopting yields of rapidly rotating massive stars, with vrot between 150 and $300\, \text{km}\, \text{s}^{-1}$, can explain the observed abundance levels reasonably well for [Fe/H] < −2. These models overpredict [Sr/Fe] and [Mo/Fe] at higher metallicities, but with a tuned dependence of vrot on stellar metallicity they might achieve an acceptable fit at all [Fe/H]. If many proto-NSs are born with strong magnetic fields and short spin periods, then their neutrino-driven winds provide a natural source for Sr, Y, Zr, Mo, Ru, and Ba in low-metallicity stellar populations. Conversely, spherical winds from unmagnetized proto-NSs overproduce the observed Sr, Y, and Zr abundances by a large factor.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab2828</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2021-12, Vol.508 (3), p.3499-3507</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-27e012de7c2c8ee8123ea8f6fc3a643a496ed2d6177e792ab8dd3147652b4c553</citedby><cites>FETCH-LOGICAL-c339t-27e012de7c2c8ee8123ea8f6fc3a643a496ed2d6177e792ab8dd3147652b4c553</cites><orcidid>0000-0001-9345-9977 ; 0000-0003-2377-9574 ; 0000-0002-0743-9994 ; 0000-0002-6534-8783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab2828$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Vincenzo, Fiorenzo</creatorcontrib><creatorcontrib>Thompson, Todd A</creatorcontrib><creatorcontrib>Weinberg, David H</creatorcontrib><creatorcontrib>Griffith, Emily J</creatorcontrib><creatorcontrib>Johnson, James W</creatorcontrib><creatorcontrib>Johnson, Jennifer A</creatorcontrib><title>Nucleosynthesis signatures of neutrino-driven winds from proto-neutron stars: a perspective from chemical evolution models</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
We test the hypothesis that the observed first-peak (Sr, Y, Zr) and second-peak (Ba) s-process elemental abundances in low-metallicity Milky Way stars, and the abundances of the elements Mo and Ru, can be explained by a pervasive r-process contribution originating in neutrino-driven winds from highly magnetic and rapidly rotating proto-neutron stars (proto-NSs). We construct chemical evolution models that incorporate recent calculations of proto-NS yields in addition to contributions from asymptotic giant branch stars, Type Ia supernovae, and two alternative sets of yields for massive star winds and core-collapse supernovae. For non-rotating massive star yields from either set, models without proto-NS winds underpredict the observed s-process peak abundances by 0.3–$1\, \text{dex}$ at low metallicity, and they severely underpredict Mo and Ru at all metallicities. Models incorporating wind yields from proto-NSs with spin periods P ∼ 2–$5\, \text{ms}$ fit the observed trends for all these elements well. Alternatively, models omitting proto-NS winds but adopting yields of rapidly rotating massive stars, with vrot between 150 and $300\, \text{km}\, \text{s}^{-1}$, can explain the observed abundance levels reasonably well for [Fe/H] < −2. These models overpredict [Sr/Fe] and [Mo/Fe] at higher metallicities, but with a tuned dependence of vrot on stellar metallicity they might achieve an acceptable fit at all [Fe/H]. If many proto-NSs are born with strong magnetic fields and short spin periods, then their neutrino-driven winds provide a natural source for Sr, Y, Zr, Mo, Ru, and Ba in low-metallicity stellar populations. Conversely, spherical winds from unmagnetized proto-NSs overproduce the observed Sr, Y, and Zr abundances by a large factor.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqWwMntlCPUjcRI2VPGSKlhgjlz7hholduTrFJVfT2hhZjrLd86RPkIuObvmrJaL3keNC0x6LSpRHZEZl6rIRK3UMZkxJousKjk_JWeIH4yxXAo1I1_Po-kg4M6nDaBDiu7d6zRGQBpa6mFM0fmQ2ei24Omn8xZpG0NPhxhSyPZA8HS6jXhDNR0g4gAmTfiBMxvondEdhW3oxuQmuA8WOjwnJ63uEC5-c07e7u9el4_Z6uXhaXm7yoyUdcpECYwLC6URpgKouJCgq1a1RmqVS53XCqywipcllLXQ68payfNSFWKdm6KQc3J92DUxIEZomyG6Xsddw1nzY67Zm2v-zE2Fq0MhjMN_7Dd2gHZy</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Vincenzo, Fiorenzo</creator><creator>Thompson, Todd A</creator><creator>Weinberg, David H</creator><creator>Griffith, Emily J</creator><creator>Johnson, James W</creator><creator>Johnson, Jennifer A</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9345-9977</orcidid><orcidid>https://orcid.org/0000-0003-2377-9574</orcidid><orcidid>https://orcid.org/0000-0002-0743-9994</orcidid><orcidid>https://orcid.org/0000-0002-6534-8783</orcidid></search><sort><creationdate>20211201</creationdate><title>Nucleosynthesis signatures of neutrino-driven winds from proto-neutron stars: a perspective from chemical evolution models</title><author>Vincenzo, Fiorenzo ; Thompson, Todd A ; Weinberg, David H ; Griffith, Emily J ; Johnson, James W ; Johnson, Jennifer A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-27e012de7c2c8ee8123ea8f6fc3a643a496ed2d6177e792ab8dd3147652b4c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vincenzo, Fiorenzo</creatorcontrib><creatorcontrib>Thompson, Todd A</creatorcontrib><creatorcontrib>Weinberg, David H</creatorcontrib><creatorcontrib>Griffith, Emily J</creatorcontrib><creatorcontrib>Johnson, James W</creatorcontrib><creatorcontrib>Johnson, Jennifer A</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vincenzo, Fiorenzo</au><au>Thompson, Todd A</au><au>Weinberg, David H</au><au>Griffith, Emily J</au><au>Johnson, James W</au><au>Johnson, Jennifer A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleosynthesis signatures of neutrino-driven winds from proto-neutron stars: a perspective from chemical evolution models</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>508</volume><issue>3</issue><spage>3499</spage><epage>3507</epage><pages>3499-3507</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
We test the hypothesis that the observed first-peak (Sr, Y, Zr) and second-peak (Ba) s-process elemental abundances in low-metallicity Milky Way stars, and the abundances of the elements Mo and Ru, can be explained by a pervasive r-process contribution originating in neutrino-driven winds from highly magnetic and rapidly rotating proto-neutron stars (proto-NSs). We construct chemical evolution models that incorporate recent calculations of proto-NS yields in addition to contributions from asymptotic giant branch stars, Type Ia supernovae, and two alternative sets of yields for massive star winds and core-collapse supernovae. For non-rotating massive star yields from either set, models without proto-NS winds underpredict the observed s-process peak abundances by 0.3–$1\, \text{dex}$ at low metallicity, and they severely underpredict Mo and Ru at all metallicities. Models incorporating wind yields from proto-NSs with spin periods P ∼ 2–$5\, \text{ms}$ fit the observed trends for all these elements well. Alternatively, models omitting proto-NS winds but adopting yields of rapidly rotating massive stars, with vrot between 150 and $300\, \text{km}\, \text{s}^{-1}$, can explain the observed abundance levels reasonably well for [Fe/H] < −2. These models overpredict [Sr/Fe] and [Mo/Fe] at higher metallicities, but with a tuned dependence of vrot on stellar metallicity they might achieve an acceptable fit at all [Fe/H]. If many proto-NSs are born with strong magnetic fields and short spin periods, then their neutrino-driven winds provide a natural source for Sr, Y, Zr, Mo, Ru, and Ba in low-metallicity stellar populations. Conversely, spherical winds from unmagnetized proto-NSs overproduce the observed Sr, Y, and Zr abundances by a large factor.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab2828</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9345-9977</orcidid><orcidid>https://orcid.org/0000-0003-2377-9574</orcidid><orcidid>https://orcid.org/0000-0002-0743-9994</orcidid><orcidid>https://orcid.org/0000-0002-6534-8783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2021-12, Vol.508 (3), p.3499-3507 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_stab2828 |
source | Oxford Journals Open Access Collection |
title | Nucleosynthesis signatures of neutrino-driven winds from proto-neutron stars: a perspective from chemical evolution models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleosynthesis%20signatures%20of%20neutrino-driven%20winds%20from%20proto-neutron%20stars:%20a%20perspective%20from%20chemical%20evolution%20models&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Vincenzo,%20Fiorenzo&rft.date=2021-12-01&rft.volume=508&rft.issue=3&rft.spage=3499&rft.epage=3507&rft.pages=3499-3507&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab2828&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab2828%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab2828&rfr_iscdi=true |