From dust to planets – I. Planetesimal and embryo formation

ABSTRACT Planet formation models begin with proto-embryos and planetesimals already fully formed, missing out a crucial step, the formation of planetesimals/proto-embryos. In this work, we include prescriptions for planetesimal and proto-embryo formation arising from pebbles becoming trapped in shor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-09, Vol.506 (3), p.3596-3614
1. Verfasser: Coleman, Gavin A L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3614
container_issue 3
container_start_page 3596
container_title Monthly notices of the Royal Astronomical Society
container_volume 506
creator Coleman, Gavin A L
description ABSTRACT Planet formation models begin with proto-embryos and planetesimals already fully formed, missing out a crucial step, the formation of planetesimals/proto-embryos. In this work, we include prescriptions for planetesimal and proto-embryo formation arising from pebbles becoming trapped in short-lived pressure bumps, in thermally evolving viscous discs to examine the sizes and distributions of proto-embryos and planetesimals throughout the disc. We find that planetesimal sizes increase with orbital distance, from ∼10 km close to the star to hundreds of kilometres further away. Proto-embryo masses are also found to increase with orbital radius, ranging from $10^{-6}{\, {\rm M}_{\oplus }}$ around the iceline, to $10^{-3}{\, {\rm M}_{\oplus }}$ near the orbit of Pluto. We include prescriptions for pebble and planetesimal accretion to examine the masses that proto-embryos can attain. Close to the star, planetesimal accretion is efficient due to small planetesimals, whilst pebble accretion is efficient where pebble sizes are fragmentation limited, but inefficient when drift dominated due to low accretion rates before the pebble supply diminishes. Exterior to the iceline, planetesimal accretion becomes inefficient due to increasing planetesimal eccentricities, whilst pebble accretion becomes more efficient as the initial proto-embryo masses increase, allowing them to significantly grow before the pebble supply is depleted. Combining both scenarios allows for more massive proto-embryos at larger distances, since the accretion of planetesimals allows pebble accretion to become more efficient, allowing giant planet cores to form at distances upto $10{\, {\rm au}}$. By including more realistic initial proto-embryo and planetesimal sizes, as well as combined accretion scenarios, should allow for a more complete understanding in the beginning to end process of how planets and planetary systems form.
doi_str_mv 10.1093/mnras/stab1904
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab1904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab1904</oup_id><sourcerecordid>10.1093/mnras/stab1904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-b5b2647460a589d0263dc86929c6abb48425ac668ab50919c62c65ccca784f8f3</originalsourceid><addsrcrecordid>eNqFjz1PwzAQhi0EEqGwMntlSHr-utgDA6poqVQJBpgj20mkoiSO7HToxn_gH_JLKC3MTK_u1T2newi5ZVAwMGLeD9GmeZqsYwbkGcmYQJVzg3hOMgChcl0ydkmuUnoHACk4ZuR-GUNP612a6BTo2NmhmRL9-vik64K-HMcmbXvbUTvUtOld3AfahtjbaRuGa3LR2i41N785I2_Lx9fFU755Xq0XD5vc81JMuVOOoywlglXa1MBR1F6j4cajdU5qyZX1iNo6BYYdWu5Ree9tqWWrWzEjxemujyGl2LTVGA9PxX3FoPqRr47y1Z_8Abg7AWE3_rf7DYS2XbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>From dust to planets – I. Planetesimal and embryo formation</title><source>Oxford Journals Open Access Collection</source><creator>Coleman, Gavin A L</creator><creatorcontrib>Coleman, Gavin A L</creatorcontrib><description>ABSTRACT Planet formation models begin with proto-embryos and planetesimals already fully formed, missing out a crucial step, the formation of planetesimals/proto-embryos. In this work, we include prescriptions for planetesimal and proto-embryo formation arising from pebbles becoming trapped in short-lived pressure bumps, in thermally evolving viscous discs to examine the sizes and distributions of proto-embryos and planetesimals throughout the disc. We find that planetesimal sizes increase with orbital distance, from ∼10 km close to the star to hundreds of kilometres further away. Proto-embryo masses are also found to increase with orbital radius, ranging from $10^{-6}{\, {\rm M}_{\oplus }}$ around the iceline, to $10^{-3}{\, {\rm M}_{\oplus }}$ near the orbit of Pluto. We include prescriptions for pebble and planetesimal accretion to examine the masses that proto-embryos can attain. Close to the star, planetesimal accretion is efficient due to small planetesimals, whilst pebble accretion is efficient where pebble sizes are fragmentation limited, but inefficient when drift dominated due to low accretion rates before the pebble supply diminishes. Exterior to the iceline, planetesimal accretion becomes inefficient due to increasing planetesimal eccentricities, whilst pebble accretion becomes more efficient as the initial proto-embryo masses increase, allowing them to significantly grow before the pebble supply is depleted. Combining both scenarios allows for more massive proto-embryos at larger distances, since the accretion of planetesimals allows pebble accretion to become more efficient, allowing giant planet cores to form at distances upto $10{\, {\rm au}}$. By including more realistic initial proto-embryo and planetesimal sizes, as well as combined accretion scenarios, should allow for a more complete understanding in the beginning to end process of how planets and planetary systems form.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab1904</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2021-09, Vol.506 (3), p.3596-3614</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-b5b2647460a589d0263dc86929c6abb48425ac668ab50919c62c65ccca784f8f3</citedby><cites>FETCH-LOGICAL-c273t-b5b2647460a589d0263dc86929c6abb48425ac668ab50919c62c65ccca784f8f3</cites><orcidid>0000-0001-5111-8963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1599,27905,27906</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab1904$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Coleman, Gavin A L</creatorcontrib><title>From dust to planets – I. Planetesimal and embryo formation</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Planet formation models begin with proto-embryos and planetesimals already fully formed, missing out a crucial step, the formation of planetesimals/proto-embryos. In this work, we include prescriptions for planetesimal and proto-embryo formation arising from pebbles becoming trapped in short-lived pressure bumps, in thermally evolving viscous discs to examine the sizes and distributions of proto-embryos and planetesimals throughout the disc. We find that planetesimal sizes increase with orbital distance, from ∼10 km close to the star to hundreds of kilometres further away. Proto-embryo masses are also found to increase with orbital radius, ranging from $10^{-6}{\, {\rm M}_{\oplus }}$ around the iceline, to $10^{-3}{\, {\rm M}_{\oplus }}$ near the orbit of Pluto. We include prescriptions for pebble and planetesimal accretion to examine the masses that proto-embryos can attain. Close to the star, planetesimal accretion is efficient due to small planetesimals, whilst pebble accretion is efficient where pebble sizes are fragmentation limited, but inefficient when drift dominated due to low accretion rates before the pebble supply diminishes. Exterior to the iceline, planetesimal accretion becomes inefficient due to increasing planetesimal eccentricities, whilst pebble accretion becomes more efficient as the initial proto-embryo masses increase, allowing them to significantly grow before the pebble supply is depleted. Combining both scenarios allows for more massive proto-embryos at larger distances, since the accretion of planetesimals allows pebble accretion to become more efficient, allowing giant planet cores to form at distances upto $10{\, {\rm au}}$. By including more realistic initial proto-embryo and planetesimal sizes, as well as combined accretion scenarios, should allow for a more complete understanding in the beginning to end process of how planets and planetary systems form.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAQhi0EEqGwMntlSHr-utgDA6poqVQJBpgj20mkoiSO7HToxn_gH_JLKC3MTK_u1T2newi5ZVAwMGLeD9GmeZqsYwbkGcmYQJVzg3hOMgChcl0ydkmuUnoHACk4ZuR-GUNP612a6BTo2NmhmRL9-vik64K-HMcmbXvbUTvUtOld3AfahtjbaRuGa3LR2i41N785I2_Lx9fFU755Xq0XD5vc81JMuVOOoywlglXa1MBR1F6j4cajdU5qyZX1iNo6BYYdWu5Ree9tqWWrWzEjxemujyGl2LTVGA9PxX3FoPqRr47y1Z_8Abg7AWE3_rf7DYS2XbU</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Coleman, Gavin A L</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5111-8963</orcidid></search><sort><creationdate>20210901</creationdate><title>From dust to planets – I. Planetesimal and embryo formation</title><author>Coleman, Gavin A L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-b5b2647460a589d0263dc86929c6abb48425ac668ab50919c62c65ccca784f8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coleman, Gavin A L</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Coleman, Gavin A L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From dust to planets – I. Planetesimal and embryo formation</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>506</volume><issue>3</issue><spage>3596</spage><epage>3614</epage><pages>3596-3614</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Planet formation models begin with proto-embryos and planetesimals already fully formed, missing out a crucial step, the formation of planetesimals/proto-embryos. In this work, we include prescriptions for planetesimal and proto-embryo formation arising from pebbles becoming trapped in short-lived pressure bumps, in thermally evolving viscous discs to examine the sizes and distributions of proto-embryos and planetesimals throughout the disc. We find that planetesimal sizes increase with orbital distance, from ∼10 km close to the star to hundreds of kilometres further away. Proto-embryo masses are also found to increase with orbital radius, ranging from $10^{-6}{\, {\rm M}_{\oplus }}$ around the iceline, to $10^{-3}{\, {\rm M}_{\oplus }}$ near the orbit of Pluto. We include prescriptions for pebble and planetesimal accretion to examine the masses that proto-embryos can attain. Close to the star, planetesimal accretion is efficient due to small planetesimals, whilst pebble accretion is efficient where pebble sizes are fragmentation limited, but inefficient when drift dominated due to low accretion rates before the pebble supply diminishes. Exterior to the iceline, planetesimal accretion becomes inefficient due to increasing planetesimal eccentricities, whilst pebble accretion becomes more efficient as the initial proto-embryo masses increase, allowing them to significantly grow before the pebble supply is depleted. Combining both scenarios allows for more massive proto-embryos at larger distances, since the accretion of planetesimals allows pebble accretion to become more efficient, allowing giant planet cores to form at distances upto $10{\, {\rm au}}$. By including more realistic initial proto-embryo and planetesimal sizes, as well as combined accretion scenarios, should allow for a more complete understanding in the beginning to end process of how planets and planetary systems form.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab1904</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5111-8963</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2021-09, Vol.506 (3), p.3596-3614
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stab1904
source Oxford Journals Open Access Collection
title From dust to planets – I. Planetesimal and embryo formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20dust%20to%20planets%20%E2%80%93%20I.%20Planetesimal%20and%20embryo%20formation&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Coleman,%20Gavin%20A%20L&rft.date=2021-09-01&rft.volume=506&rft.issue=3&rft.spage=3596&rft.epage=3614&rft.pages=3596-3614&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab1904&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab1904%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab1904&rfr_iscdi=true