The Global Magneto-Ionic Medium Survey (GMIMS): the brightest polarized region in the southern sky at 75 cm and its implications for Radio Loop II

ABSTRACT Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300–480 MHz at 81  arcmin resolution, we reveal the brightest region in the southern polarized sky at these frequencies. The region, G150−50, covers nearly 20 $\deg ^2$, near...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-11, Vol.507 (3), p.3495-3518
Hauptverfasser: Thomson, Alec J M, Landecker, T L, McClure-Griffiths, N M, Dickey, John M, Campbell, J L, Carretti, Ettore, Clark, S E, Federrath, Christoph, Gaensler, B M, Han, J L, Haverkorn, Marijke, Hill, Alex S, Mao, S A, Ordog, Anna, Pratley, Luke, Reich, Wolfgang, Van Eck, Cameron L, West, J L, Wolleben, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3518
container_issue 3
container_start_page 3495
container_title Monthly notices of the Royal Astronomical Society
container_volume 507
creator Thomson, Alec J M
Landecker, T L
McClure-Griffiths, N M
Dickey, John M
Campbell, J L
Carretti, Ettore
Clark, S E
Federrath, Christoph
Gaensler, B M
Han, J L
Haverkorn, Marijke
Hill, Alex S
Mao, S A
Ordog, Anna
Pratley, Luke
Reich, Wolfgang
Van Eck, Cameron L
West, J L
Wolleben, M
description ABSTRACT Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300–480 MHz at 81  arcmin resolution, we reveal the brightest region in the southern polarized sky at these frequencies. The region, G150−50, covers nearly 20 $\deg ^2$, near (l, b) ≈ (150○, −50○). Using GMIMS-LBS and complementary data at higher frequencies (∼0.6–30 GHz), we apply Faraday tomography and Stokes QU-fitting techniques. We find that the magnetic field associated with G150−50 is both coherent and primarily in the plane of the sky, and indicates that the region is associated with Radio Loop II. The Faraday depth spectra across G150−50 are broad and contain a large-scale spatial gradient. We model the magnetic field in the region as an expanding shell, and we can reproduce both the observed Faraday rotation and the synchrotron emission in the GMIMS-LBS band. Using QU fitting, we find that the Faraday spectra are produced by several Faraday dispersive sources along the line of sight. Alternatively, polarization horizon effects that we cannot model are adding complexity to the high-frequency polarized spectra. The magnetic field structure of Loop II dominates a large fraction of the sky, and studies of the large-scale polarized sky will need to account for this object. Studies of G150−50 with high angular resolution could mitigate polarization horizon effects, and clarify the nature of G150−50.
doi_str_mv 10.1093/mnras/stab1805
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stab1805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab1805</oup_id><sourcerecordid>10.1093/mnras/stab1805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-9e3272ac0a47469895442e734ecf9eb66d16d76370237bf4f7f25f7ec07d128c3</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqWwMr-RDmntOLETNlRBidQKiZY5chynNSRxZLtIZWJl5wv5EkILM9NdzrnDQeiS4DHBKZ00rRVu4rwoSILjIzQglMVBmDJ2jAYY0zhIOCGn6My5Z4xxREM2QJ-rjYJZbQpRw0KsW-VNkJlWS1ioUm8bWG7tq9rB1WyRLZaja_A9X1i93njlPHSmFla_qRKsWmvTgm73hDPbfmwL7mUHwgOPv94_ZAOiLUF7B7rpai2F7xUHlbHwKEptYG5MB1l2jk4qUTt18btD9HR3u5reB_OHWTa9mQeSEuqDVNGQh0JiEfGIpUkaR1GoOI2UrFJVMFYSVnJGOQ4pL6qo4lUYV1xJzEsSJpIO0fjwK61xzqoq76xuhN3lBOc_TfN90_yvaS-MDoLZdv-x3yMee_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Global Magneto-Ionic Medium Survey (GMIMS): the brightest polarized region in the southern sky at 75 cm and its implications for Radio Loop II</title><source>Oxford Journals Open Access Collection</source><creator>Thomson, Alec J M ; Landecker, T L ; McClure-Griffiths, N M ; Dickey, John M ; Campbell, J L ; Carretti, Ettore ; Clark, S E ; Federrath, Christoph ; Gaensler, B M ; Han, J L ; Haverkorn, Marijke ; Hill, Alex S ; Mao, S A ; Ordog, Anna ; Pratley, Luke ; Reich, Wolfgang ; Van Eck, Cameron L ; West, J L ; Wolleben, M</creator><creatorcontrib>Thomson, Alec J M ; Landecker, T L ; McClure-Griffiths, N M ; Dickey, John M ; Campbell, J L ; Carretti, Ettore ; Clark, S E ; Federrath, Christoph ; Gaensler, B M ; Han, J L ; Haverkorn, Marijke ; Hill, Alex S ; Mao, S A ; Ordog, Anna ; Pratley, Luke ; Reich, Wolfgang ; Van Eck, Cameron L ; West, J L ; Wolleben, M</creatorcontrib><description>ABSTRACT Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300–480 MHz at 81  arcmin resolution, we reveal the brightest region in the southern polarized sky at these frequencies. The region, G150−50, covers nearly 20 $\deg ^2$, near (l, b) ≈ (150○, −50○). Using GMIMS-LBS and complementary data at higher frequencies (∼0.6–30 GHz), we apply Faraday tomography and Stokes QU-fitting techniques. We find that the magnetic field associated with G150−50 is both coherent and primarily in the plane of the sky, and indicates that the region is associated with Radio Loop II. The Faraday depth spectra across G150−50 are broad and contain a large-scale spatial gradient. We model the magnetic field in the region as an expanding shell, and we can reproduce both the observed Faraday rotation and the synchrotron emission in the GMIMS-LBS band. Using QU fitting, we find that the Faraday spectra are produced by several Faraday dispersive sources along the line of sight. Alternatively, polarization horizon effects that we cannot model are adding complexity to the high-frequency polarized spectra. The magnetic field structure of Loop II dominates a large fraction of the sky, and studies of the large-scale polarized sky will need to account for this object. Studies of G150−50 with high angular resolution could mitigate polarization horizon effects, and clarify the nature of G150−50.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab1805</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2021-11, Vol.507 (3), p.3495-3518</ispartof><rights>2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-9e3272ac0a47469895442e734ecf9eb66d16d76370237bf4f7f25f7ec07d128c3</citedby><cites>FETCH-LOGICAL-c313t-9e3272ac0a47469895442e734ecf9eb66d16d76370237bf4f7f25f7ec07d128c3</cites><orcidid>0000-0001-8906-7866 ; 0000-0002-3382-9558 ; 0000-0002-3973-8403 ; 0000-0001-7722-8458 ; 0000-0001-7301-5666 ; 0000-0001-9472-041X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab1805$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Thomson, Alec J M</creatorcontrib><creatorcontrib>Landecker, T L</creatorcontrib><creatorcontrib>McClure-Griffiths, N M</creatorcontrib><creatorcontrib>Dickey, John M</creatorcontrib><creatorcontrib>Campbell, J L</creatorcontrib><creatorcontrib>Carretti, Ettore</creatorcontrib><creatorcontrib>Clark, S E</creatorcontrib><creatorcontrib>Federrath, Christoph</creatorcontrib><creatorcontrib>Gaensler, B M</creatorcontrib><creatorcontrib>Han, J L</creatorcontrib><creatorcontrib>Haverkorn, Marijke</creatorcontrib><creatorcontrib>Hill, Alex S</creatorcontrib><creatorcontrib>Mao, S A</creatorcontrib><creatorcontrib>Ordog, Anna</creatorcontrib><creatorcontrib>Pratley, Luke</creatorcontrib><creatorcontrib>Reich, Wolfgang</creatorcontrib><creatorcontrib>Van Eck, Cameron L</creatorcontrib><creatorcontrib>West, J L</creatorcontrib><creatorcontrib>Wolleben, M</creatorcontrib><title>The Global Magneto-Ionic Medium Survey (GMIMS): the brightest polarized region in the southern sky at 75 cm and its implications for Radio Loop II</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300–480 MHz at 81  arcmin resolution, we reveal the brightest region in the southern polarized sky at these frequencies. The region, G150−50, covers nearly 20 $\deg ^2$, near (l, b) ≈ (150○, −50○). Using GMIMS-LBS and complementary data at higher frequencies (∼0.6–30 GHz), we apply Faraday tomography and Stokes QU-fitting techniques. We find that the magnetic field associated with G150−50 is both coherent and primarily in the plane of the sky, and indicates that the region is associated with Radio Loop II. The Faraday depth spectra across G150−50 are broad and contain a large-scale spatial gradient. We model the magnetic field in the region as an expanding shell, and we can reproduce both the observed Faraday rotation and the synchrotron emission in the GMIMS-LBS band. Using QU fitting, we find that the Faraday spectra are produced by several Faraday dispersive sources along the line of sight. Alternatively, polarization horizon effects that we cannot model are adding complexity to the high-frequency polarized spectra. The magnetic field structure of Loop II dominates a large fraction of the sky, and studies of the large-scale polarized sky will need to account for this object. Studies of G150−50 with high angular resolution could mitigate polarization horizon effects, and clarify the nature of G150−50.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqWwMr-RDmntOLETNlRBidQKiZY5chynNSRxZLtIZWJl5wv5EkILM9NdzrnDQeiS4DHBKZ00rRVu4rwoSILjIzQglMVBmDJ2jAYY0zhIOCGn6My5Z4xxREM2QJ-rjYJZbQpRw0KsW-VNkJlWS1ioUm8bWG7tq9rB1WyRLZaja_A9X1i93njlPHSmFla_qRKsWmvTgm73hDPbfmwL7mUHwgOPv94_ZAOiLUF7B7rpai2F7xUHlbHwKEptYG5MB1l2jk4qUTt18btD9HR3u5reB_OHWTa9mQeSEuqDVNGQh0JiEfGIpUkaR1GoOI2UrFJVMFYSVnJGOQ4pL6qo4lUYV1xJzEsSJpIO0fjwK61xzqoq76xuhN3lBOc_TfN90_yvaS-MDoLZdv-x3yMee_s</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Thomson, Alec J M</creator><creator>Landecker, T L</creator><creator>McClure-Griffiths, N M</creator><creator>Dickey, John M</creator><creator>Campbell, J L</creator><creator>Carretti, Ettore</creator><creator>Clark, S E</creator><creator>Federrath, Christoph</creator><creator>Gaensler, B M</creator><creator>Han, J L</creator><creator>Haverkorn, Marijke</creator><creator>Hill, Alex S</creator><creator>Mao, S A</creator><creator>Ordog, Anna</creator><creator>Pratley, Luke</creator><creator>Reich, Wolfgang</creator><creator>Van Eck, Cameron L</creator><creator>West, J L</creator><creator>Wolleben, M</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8906-7866</orcidid><orcidid>https://orcid.org/0000-0002-3382-9558</orcidid><orcidid>https://orcid.org/0000-0002-3973-8403</orcidid><orcidid>https://orcid.org/0000-0001-7722-8458</orcidid><orcidid>https://orcid.org/0000-0001-7301-5666</orcidid><orcidid>https://orcid.org/0000-0001-9472-041X</orcidid></search><sort><creationdate>20211101</creationdate><title>The Global Magneto-Ionic Medium Survey (GMIMS): the brightest polarized region in the southern sky at 75 cm and its implications for Radio Loop II</title><author>Thomson, Alec J M ; Landecker, T L ; McClure-Griffiths, N M ; Dickey, John M ; Campbell, J L ; Carretti, Ettore ; Clark, S E ; Federrath, Christoph ; Gaensler, B M ; Han, J L ; Haverkorn, Marijke ; Hill, Alex S ; Mao, S A ; Ordog, Anna ; Pratley, Luke ; Reich, Wolfgang ; Van Eck, Cameron L ; West, J L ; Wolleben, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-9e3272ac0a47469895442e734ecf9eb66d16d76370237bf4f7f25f7ec07d128c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomson, Alec J M</creatorcontrib><creatorcontrib>Landecker, T L</creatorcontrib><creatorcontrib>McClure-Griffiths, N M</creatorcontrib><creatorcontrib>Dickey, John M</creatorcontrib><creatorcontrib>Campbell, J L</creatorcontrib><creatorcontrib>Carretti, Ettore</creatorcontrib><creatorcontrib>Clark, S E</creatorcontrib><creatorcontrib>Federrath, Christoph</creatorcontrib><creatorcontrib>Gaensler, B M</creatorcontrib><creatorcontrib>Han, J L</creatorcontrib><creatorcontrib>Haverkorn, Marijke</creatorcontrib><creatorcontrib>Hill, Alex S</creatorcontrib><creatorcontrib>Mao, S A</creatorcontrib><creatorcontrib>Ordog, Anna</creatorcontrib><creatorcontrib>Pratley, Luke</creatorcontrib><creatorcontrib>Reich, Wolfgang</creatorcontrib><creatorcontrib>Van Eck, Cameron L</creatorcontrib><creatorcontrib>West, J L</creatorcontrib><creatorcontrib>Wolleben, M</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thomson, Alec J M</au><au>Landecker, T L</au><au>McClure-Griffiths, N M</au><au>Dickey, John M</au><au>Campbell, J L</au><au>Carretti, Ettore</au><au>Clark, S E</au><au>Federrath, Christoph</au><au>Gaensler, B M</au><au>Han, J L</au><au>Haverkorn, Marijke</au><au>Hill, Alex S</au><au>Mao, S A</au><au>Ordog, Anna</au><au>Pratley, Luke</au><au>Reich, Wolfgang</au><au>Van Eck, Cameron L</au><au>West, J L</au><au>Wolleben, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Global Magneto-Ionic Medium Survey (GMIMS): the brightest polarized region in the southern sky at 75 cm and its implications for Radio Loop II</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>507</volume><issue>3</issue><spage>3495</spage><epage>3518</epage><pages>3495-3518</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Using the Global Magneto-Ionic Medium Survey (GMIMS) Low-Band South (LBS) southern sky polarization survey, covering 300–480 MHz at 81  arcmin resolution, we reveal the brightest region in the southern polarized sky at these frequencies. The region, G150−50, covers nearly 20 $\deg ^2$, near (l, b) ≈ (150○, −50○). Using GMIMS-LBS and complementary data at higher frequencies (∼0.6–30 GHz), we apply Faraday tomography and Stokes QU-fitting techniques. We find that the magnetic field associated with G150−50 is both coherent and primarily in the plane of the sky, and indicates that the region is associated with Radio Loop II. The Faraday depth spectra across G150−50 are broad and contain a large-scale spatial gradient. We model the magnetic field in the region as an expanding shell, and we can reproduce both the observed Faraday rotation and the synchrotron emission in the GMIMS-LBS band. Using QU fitting, we find that the Faraday spectra are produced by several Faraday dispersive sources along the line of sight. Alternatively, polarization horizon effects that we cannot model are adding complexity to the high-frequency polarized spectra. The magnetic field structure of Loop II dominates a large fraction of the sky, and studies of the large-scale polarized sky will need to account for this object. Studies of G150−50 with high angular resolution could mitigate polarization horizon effects, and clarify the nature of G150−50.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stab1805</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-8906-7866</orcidid><orcidid>https://orcid.org/0000-0002-3382-9558</orcidid><orcidid>https://orcid.org/0000-0002-3973-8403</orcidid><orcidid>https://orcid.org/0000-0001-7722-8458</orcidid><orcidid>https://orcid.org/0000-0001-7301-5666</orcidid><orcidid>https://orcid.org/0000-0001-9472-041X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2021-11, Vol.507 (3), p.3495-3518
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stab1805
source Oxford Journals Open Access Collection
title The Global Magneto-Ionic Medium Survey (GMIMS): the brightest polarized region in the southern sky at 75 cm and its implications for Radio Loop II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Global%20Magneto-Ionic%20Medium%20Survey%20(GMIMS):%20the%20brightest%20polarized%20region%20in%20the%20southern%20sky%20at%2075%E2%80%89cm%20and%20its%20implications%20for%20Radio%20Loop%20II&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Thomson,%20Alec%20J%20M&rft.date=2021-11-01&rft.volume=507&rft.issue=3&rft.spage=3495&rft.epage=3518&rft.pages=3495-3518&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab1805&rft_dat=%3Coup_TOX%3E10.1093/mnras/stab1805%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab1805&rfr_iscdi=true