Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification

ABSTRACT One of the principal bottlenecks to atmosphere characterization in the era of all-sky surveys is the availability of fast, autonomous, and robust atmospheric retrieval methods. We present a new approach using unsupervised machine learning to generate informed priors for retrieval of exoplan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-05, Vol.494 (3), p.4492-4508
Hauptverfasser: Hayes, J J C, Kerins, E, Awiphan, S, McDonald, I, Morgan, J S, Chuanraksasat, P, Komonjinda, S, Sanguansak, N, Kittara, P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4508
container_issue 3
container_start_page 4492
container_title Monthly notices of the Royal Astronomical Society
container_volume 494
creator Hayes, J J C
Kerins, E
Awiphan, S
McDonald, I
Morgan, J S
Chuanraksasat, P
Komonjinda, S
Sanguansak, N
Kittara, P
description ABSTRACT One of the principal bottlenecks to atmosphere characterization in the era of all-sky surveys is the availability of fast, autonomous, and robust atmospheric retrieval methods. We present a new approach using unsupervised machine learning to generate informed priors for retrieval of exoplanetary atmosphere parameters from transmission spectra. We use principal component analysis (PCA) to efficiently compress the information content of a library of transmission spectra forward models generated using the platon package. We then apply a k-means clustering algorithm in PCA space to segregate the library into discrete classes. We show that our classifier is almost always able to instantaneously place a previously unseen spectrum into the correct class, for low-to-moderate spectral resolutions, R, in the range R = 30−300 and noise levels up to 10 per cent of the peak-to-trough spectrum amplitude. The distribution of physical parameters for all members of the class therefore provides an informed prior for standard retrieval methods such as nested sampling. We benchmark our informed-prior approach against a standard uniform-prior nested sampler, finding that our approach is up to a factor of 2 faster, with negligible reduction in accuracy. We demonstrate the application of this method to existing and near-future observatories, and show that it is suitable for real-world application. Our general approach is not specific to transmission spectroscopy and should be more widely applicable to cases that involve the repetitive fitting of trusted high-dimensional models to large data catalogues, including beyond exoplanetary science.
doi_str_mv 10.1093/mnras/staa978
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_staa978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/staa978</oup_id><sourcerecordid>10.1093/mnras/staa978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-15c19d09b4fbc29a4b816334c3cbfbb73b951ef6894ff83abcd63fcc70d9832e3</originalsourceid><addsrcrecordid>eNqF0D9PwzAQhnELgUQojOwZWUztOHHiEVX8kyp1gQ0pOjtnapQ4ke1UwKeH0u5MN9xP7_AQcs3ZLWdKLAcfIC5jAlB1c0IyLmRFCyXlKckYExVtas7PyUWMH4yxUhQyI2-bKbnBfTv_nuPnOPXgMeWQhjFOWwyYB0zB4Q76fI57NPs4Txh2LmKXD2C2ziPtEYLff00PMTrrDCQ3-ktyZqGPeHW8C_L6cP-yeqLrzePz6m5NTcFYorwyXHVM6dJqUygodcOlEKURRluta6FVxdHKRpXWNgK06aSwxtSsU40oUCwIPeyaMMYY0LZTcAOEr5azdp-m_UvTHtP8-puDH-fpH_oDtzBrkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification</title><source>Oxford Journals Open Access Collection</source><creator>Hayes, J J C ; Kerins, E ; Awiphan, S ; McDonald, I ; Morgan, J S ; Chuanraksasat, P ; Komonjinda, S ; Sanguansak, N ; Kittara, P</creator><creatorcontrib>Hayes, J J C ; Kerins, E ; Awiphan, S ; McDonald, I ; Morgan, J S ; Chuanraksasat, P ; Komonjinda, S ; Sanguansak, N ; Kittara, P ; SPEARNET</creatorcontrib><description>ABSTRACT One of the principal bottlenecks to atmosphere characterization in the era of all-sky surveys is the availability of fast, autonomous, and robust atmospheric retrieval methods. We present a new approach using unsupervised machine learning to generate informed priors for retrieval of exoplanetary atmosphere parameters from transmission spectra. We use principal component analysis (PCA) to efficiently compress the information content of a library of transmission spectra forward models generated using the platon package. We then apply a k-means clustering algorithm in PCA space to segregate the library into discrete classes. We show that our classifier is almost always able to instantaneously place a previously unseen spectrum into the correct class, for low-to-moderate spectral resolutions, R, in the range R = 30−300 and noise levels up to 10 per cent of the peak-to-trough spectrum amplitude. The distribution of physical parameters for all members of the class therefore provides an informed prior for standard retrieval methods such as nested sampling. We benchmark our informed-prior approach against a standard uniform-prior nested sampler, finding that our approach is up to a factor of 2 faster, with negligible reduction in accuracy. We demonstrate the application of this method to existing and near-future observatories, and show that it is suitable for real-world application. Our general approach is not specific to transmission spectroscopy and should be more widely applicable to cases that involve the repetitive fitting of trusted high-dimensional models to large data catalogues, including beyond exoplanetary science.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/staa978</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2020-05, Vol.494 (3), p.4492-4508</ispartof><rights>2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c200t-15c19d09b4fbc29a4b816334c3cbfbb73b951ef6894ff83abcd63fcc70d9832e3</citedby><cites>FETCH-LOGICAL-c200t-15c19d09b4fbc29a4b816334c3cbfbb73b951ef6894ff83abcd63fcc70d9832e3</cites><orcidid>0000-0003-0356-0655 ; 0000-0001-7021-0757 ; 0000-0001-6327-1113 ; 0000-0001-5201-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/staa978$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Hayes, J J C</creatorcontrib><creatorcontrib>Kerins, E</creatorcontrib><creatorcontrib>Awiphan, S</creatorcontrib><creatorcontrib>McDonald, I</creatorcontrib><creatorcontrib>Morgan, J S</creatorcontrib><creatorcontrib>Chuanraksasat, P</creatorcontrib><creatorcontrib>Komonjinda, S</creatorcontrib><creatorcontrib>Sanguansak, N</creatorcontrib><creatorcontrib>Kittara, P</creatorcontrib><creatorcontrib>SPEARNET</creatorcontrib><title>Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT One of the principal bottlenecks to atmosphere characterization in the era of all-sky surveys is the availability of fast, autonomous, and robust atmospheric retrieval methods. We present a new approach using unsupervised machine learning to generate informed priors for retrieval of exoplanetary atmosphere parameters from transmission spectra. We use principal component analysis (PCA) to efficiently compress the information content of a library of transmission spectra forward models generated using the platon package. We then apply a k-means clustering algorithm in PCA space to segregate the library into discrete classes. We show that our classifier is almost always able to instantaneously place a previously unseen spectrum into the correct class, for low-to-moderate spectral resolutions, R, in the range R = 30−300 and noise levels up to 10 per cent of the peak-to-trough spectrum amplitude. The distribution of physical parameters for all members of the class therefore provides an informed prior for standard retrieval methods such as nested sampling. We benchmark our informed-prior approach against a standard uniform-prior nested sampler, finding that our approach is up to a factor of 2 faster, with negligible reduction in accuracy. We demonstrate the application of this method to existing and near-future observatories, and show that it is suitable for real-world application. Our general approach is not specific to transmission spectroscopy and should be more widely applicable to cases that involve the repetitive fitting of trusted high-dimensional models to large data catalogues, including beyond exoplanetary science.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0D9PwzAQhnELgUQojOwZWUztOHHiEVX8kyp1gQ0pOjtnapQ4ke1UwKeH0u5MN9xP7_AQcs3ZLWdKLAcfIC5jAlB1c0IyLmRFCyXlKckYExVtas7PyUWMH4yxUhQyI2-bKbnBfTv_nuPnOPXgMeWQhjFOWwyYB0zB4Q76fI57NPs4Txh2LmKXD2C2ziPtEYLff00PMTrrDCQ3-ktyZqGPeHW8C_L6cP-yeqLrzePz6m5NTcFYorwyXHVM6dJqUygodcOlEKURRluta6FVxdHKRpXWNgK06aSwxtSsU40oUCwIPeyaMMYY0LZTcAOEr5azdp-m_UvTHtP8-puDH-fpH_oDtzBrkQ</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Hayes, J J C</creator><creator>Kerins, E</creator><creator>Awiphan, S</creator><creator>McDonald, I</creator><creator>Morgan, J S</creator><creator>Chuanraksasat, P</creator><creator>Komonjinda, S</creator><creator>Sanguansak, N</creator><creator>Kittara, P</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0356-0655</orcidid><orcidid>https://orcid.org/0000-0001-7021-0757</orcidid><orcidid>https://orcid.org/0000-0001-6327-1113</orcidid><orcidid>https://orcid.org/0000-0001-5201-1893</orcidid></search><sort><creationdate>20200521</creationdate><title>Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification</title><author>Hayes, J J C ; Kerins, E ; Awiphan, S ; McDonald, I ; Morgan, J S ; Chuanraksasat, P ; Komonjinda, S ; Sanguansak, N ; Kittara, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-15c19d09b4fbc29a4b816334c3cbfbb73b951ef6894ff83abcd63fcc70d9832e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayes, J J C</creatorcontrib><creatorcontrib>Kerins, E</creatorcontrib><creatorcontrib>Awiphan, S</creatorcontrib><creatorcontrib>McDonald, I</creatorcontrib><creatorcontrib>Morgan, J S</creatorcontrib><creatorcontrib>Chuanraksasat, P</creatorcontrib><creatorcontrib>Komonjinda, S</creatorcontrib><creatorcontrib>Sanguansak, N</creatorcontrib><creatorcontrib>Kittara, P</creatorcontrib><creatorcontrib>SPEARNET</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hayes, J J C</au><au>Kerins, E</au><au>Awiphan, S</au><au>McDonald, I</au><au>Morgan, J S</au><au>Chuanraksasat, P</au><au>Komonjinda, S</au><au>Sanguansak, N</au><au>Kittara, P</au><aucorp>SPEARNET</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>494</volume><issue>3</issue><spage>4492</spage><epage>4508</epage><pages>4492-4508</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT One of the principal bottlenecks to atmosphere characterization in the era of all-sky surveys is the availability of fast, autonomous, and robust atmospheric retrieval methods. We present a new approach using unsupervised machine learning to generate informed priors for retrieval of exoplanetary atmosphere parameters from transmission spectra. We use principal component analysis (PCA) to efficiently compress the information content of a library of transmission spectra forward models generated using the platon package. We then apply a k-means clustering algorithm in PCA space to segregate the library into discrete classes. We show that our classifier is almost always able to instantaneously place a previously unseen spectrum into the correct class, for low-to-moderate spectral resolutions, R, in the range R = 30−300 and noise levels up to 10 per cent of the peak-to-trough spectrum amplitude. The distribution of physical parameters for all members of the class therefore provides an informed prior for standard retrieval methods such as nested sampling. We benchmark our informed-prior approach against a standard uniform-prior nested sampler, finding that our approach is up to a factor of 2 faster, with negligible reduction in accuracy. We demonstrate the application of this method to existing and near-future observatories, and show that it is suitable for real-world application. Our general approach is not specific to transmission spectroscopy and should be more widely applicable to cases that involve the repetitive fitting of trusted high-dimensional models to large data catalogues, including beyond exoplanetary science.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/staa978</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0356-0655</orcidid><orcidid>https://orcid.org/0000-0001-7021-0757</orcidid><orcidid>https://orcid.org/0000-0001-6327-1113</orcidid><orcidid>https://orcid.org/0000-0001-5201-1893</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2020-05, Vol.494 (3), p.4492-4508
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_staa978
source Oxford Journals Open Access Collection
title Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20exoplanet%20atmosphere%20retrieval%20using%20unsupervised%20machine-learning%20classification&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Hayes,%20J%20J%20C&rft.aucorp=SPEARNET&rft.date=2020-05-21&rft.volume=494&rft.issue=3&rft.spage=4492&rft.epage=4508&rft.pages=4492-4508&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/staa978&rft_dat=%3Coup_TOX%3E10.1093/mnras/staa978%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/staa978&rfr_iscdi=true