The diversity and variability of star formation histories in models of galaxy evolution

ABSTRACT Understanding the variability of galaxy star formation histories (SFHs) across a range of time-scales provides insight into the underlying physical processes that regulate star formation within galaxies. We compile the SFHs of galaxies at z = 0 from an extensive set of models, ranging from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-10, Vol.498 (1), p.430-463
Hauptverfasser: Iyer, Kartheik G, Tacchella, Sandro, Genel, Shy, Hayward, Christopher C, Hernquist, Lars, Brooks, Alyson M, Caplar, Neven, Davé, Romeel, Diemer, Benedikt, Forbes, John C, Gawiser, Eric, Somerville, Rachel S, Starkenburg, Tjitske K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 463
container_issue 1
container_start_page 430
container_title Monthly notices of the Royal Astronomical Society
container_volume 498
creator Iyer, Kartheik G
Tacchella, Sandro
Genel, Shy
Hayward, Christopher C
Hernquist, Lars
Brooks, Alyson M
Caplar, Neven
Davé, Romeel
Diemer, Benedikt
Forbes, John C
Gawiser, Eric
Somerville, Rachel S
Starkenburg, Tjitske K
description ABSTRACT Understanding the variability of galaxy star formation histories (SFHs) across a range of time-scales provides insight into the underlying physical processes that regulate star formation within galaxies. We compile the SFHs of galaxies at z = 0 from an extensive set of models, ranging from cosmological hydrodynamical simulations (Illustris, IllustrisTNG, Mufasa, Simba, EAGLE), zoom simulations (FIRE-2, g14, and Marvel/Justice League), semi-analytic models (Santa Cruz SAM) and empirical models (UniverseMachine), and quantify the variability of these SFHs on different time-scales using the power spectral density (PSD) formalism. We find that the PSDs are well described by broken power laws, and variability on long time-scales (≳1 Gyr) accounts for most of the power in galaxy SFHs. Most hydrodynamical models show increased variability on shorter time-scales (≲300 Myr) with decreasing stellar mass. Quenching can induce ∼0.4−1 dex of additional power on time-scales >1 Gyr. The dark matter accretion histories of galaxies have remarkably self-similar PSDs and are coherent with the in situ star formation on time-scales >3 Gyr. There is considerable diversity among the different models in their (i) power due to star formation rate variability at a given time-scale, (ii) amount of correlation with adjacent time-scales (PSD slope), (iii) evolution of median PSDs with stellar mass, and (iv) presence and locations of breaks in the PSDs. The PSD framework is a useful space to study the SFHs of galaxies since model predictions vary widely. Observational constraints in this space will help constrain the relative strengths of the physical processes responsible for this variability.
doi_str_mv 10.1093/mnras/staa2150
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_staa2150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/staa2150</oup_id><sourcerecordid>10.1093/mnras/staa2150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ed19527f2a67e4da7b1f096014306352ba23a36d1b0c269de06d043368d401943</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqGwMntlSPtsJ049ooovqRJLEWP0EtvUKIkrO43IvyehMDM9Xencq6dDyC2DJQMlVm0XMK5ij8hZDmckYULmKVdSnpMEQOTpumDsklzF-AkAmeAyIe-7vaHaDSZE148UO00HDA4r18zZWzoNBmp9aLF3vqN7F3sfnInUdbT12jRxpj6wwa-RmsE3x5m7JhcWm2hufu-CvD0-7DbP6fb16WVzv01rUag-NZqpnBeWoyxMprGomAUlgWUCpMh5hVygkJpVUHOptAGpp8-FXOsMmMrEgixPu3XwMQZjy0NwLYaxZFDOWsofLeWflqlwdyr44-E_9htKJmcF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The diversity and variability of star formation histories in models of galaxy evolution</title><source>Oxford Journals Open Access Collection</source><creator>Iyer, Kartheik G ; Tacchella, Sandro ; Genel, Shy ; Hayward, Christopher C ; Hernquist, Lars ; Brooks, Alyson M ; Caplar, Neven ; Davé, Romeel ; Diemer, Benedikt ; Forbes, John C ; Gawiser, Eric ; Somerville, Rachel S ; Starkenburg, Tjitske K</creator><creatorcontrib>Iyer, Kartheik G ; Tacchella, Sandro ; Genel, Shy ; Hayward, Christopher C ; Hernquist, Lars ; Brooks, Alyson M ; Caplar, Neven ; Davé, Romeel ; Diemer, Benedikt ; Forbes, John C ; Gawiser, Eric ; Somerville, Rachel S ; Starkenburg, Tjitske K</creatorcontrib><description>ABSTRACT Understanding the variability of galaxy star formation histories (SFHs) across a range of time-scales provides insight into the underlying physical processes that regulate star formation within galaxies. We compile the SFHs of galaxies at z = 0 from an extensive set of models, ranging from cosmological hydrodynamical simulations (Illustris, IllustrisTNG, Mufasa, Simba, EAGLE), zoom simulations (FIRE-2, g14, and Marvel/Justice League), semi-analytic models (Santa Cruz SAM) and empirical models (UniverseMachine), and quantify the variability of these SFHs on different time-scales using the power spectral density (PSD) formalism. We find that the PSDs are well described by broken power laws, and variability on long time-scales (≳1 Gyr) accounts for most of the power in galaxy SFHs. Most hydrodynamical models show increased variability on shorter time-scales (≲300 Myr) with decreasing stellar mass. Quenching can induce ∼0.4−1 dex of additional power on time-scales &gt;1 Gyr. The dark matter accretion histories of galaxies have remarkably self-similar PSDs and are coherent with the in situ star formation on time-scales &gt;3 Gyr. There is considerable diversity among the different models in their (i) power due to star formation rate variability at a given time-scale, (ii) amount of correlation with adjacent time-scales (PSD slope), (iii) evolution of median PSDs with stellar mass, and (iv) presence and locations of breaks in the PSDs. The PSD framework is a useful space to study the SFHs of galaxies since model predictions vary widely. Observational constraints in this space will help constrain the relative strengths of the physical processes responsible for this variability.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/staa2150</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2020-10, Vol.498 (1), p.430-463</ispartof><rights>2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ed19527f2a67e4da7b1f096014306352ba23a36d1b0c269de06d043368d401943</citedby><cites>FETCH-LOGICAL-c379t-ed19527f2a67e4da7b1f096014306352ba23a36d1b0c269de06d043368d401943</cites><orcidid>0000-0002-8224-4505 ; 0000-0001-9298-3523 ; 0000-0003-4073-3236 ; 0000-0003-3287-5250 ; 0000-0003-2842-9434 ; 0000-0001-9568-7287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/staa2150$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Iyer, Kartheik G</creatorcontrib><creatorcontrib>Tacchella, Sandro</creatorcontrib><creatorcontrib>Genel, Shy</creatorcontrib><creatorcontrib>Hayward, Christopher C</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><creatorcontrib>Brooks, Alyson M</creatorcontrib><creatorcontrib>Caplar, Neven</creatorcontrib><creatorcontrib>Davé, Romeel</creatorcontrib><creatorcontrib>Diemer, Benedikt</creatorcontrib><creatorcontrib>Forbes, John C</creatorcontrib><creatorcontrib>Gawiser, Eric</creatorcontrib><creatorcontrib>Somerville, Rachel S</creatorcontrib><creatorcontrib>Starkenburg, Tjitske K</creatorcontrib><title>The diversity and variability of star formation histories in models of galaxy evolution</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Understanding the variability of galaxy star formation histories (SFHs) across a range of time-scales provides insight into the underlying physical processes that regulate star formation within galaxies. We compile the SFHs of galaxies at z = 0 from an extensive set of models, ranging from cosmological hydrodynamical simulations (Illustris, IllustrisTNG, Mufasa, Simba, EAGLE), zoom simulations (FIRE-2, g14, and Marvel/Justice League), semi-analytic models (Santa Cruz SAM) and empirical models (UniverseMachine), and quantify the variability of these SFHs on different time-scales using the power spectral density (PSD) formalism. We find that the PSDs are well described by broken power laws, and variability on long time-scales (≳1 Gyr) accounts for most of the power in galaxy SFHs. Most hydrodynamical models show increased variability on shorter time-scales (≲300 Myr) with decreasing stellar mass. Quenching can induce ∼0.4−1 dex of additional power on time-scales &gt;1 Gyr. The dark matter accretion histories of galaxies have remarkably self-similar PSDs and are coherent with the in situ star formation on time-scales &gt;3 Gyr. There is considerable diversity among the different models in their (i) power due to star formation rate variability at a given time-scale, (ii) amount of correlation with adjacent time-scales (PSD slope), (iii) evolution of median PSDs with stellar mass, and (iv) presence and locations of breaks in the PSDs. The PSD framework is a useful space to study the SFHs of galaxies since model predictions vary widely. Observational constraints in this space will help constrain the relative strengths of the physical processes responsible for this variability.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqGwMntlSPtsJ049ooovqRJLEWP0EtvUKIkrO43IvyehMDM9Xencq6dDyC2DJQMlVm0XMK5ij8hZDmckYULmKVdSnpMEQOTpumDsklzF-AkAmeAyIe-7vaHaDSZE148UO00HDA4r18zZWzoNBmp9aLF3vqN7F3sfnInUdbT12jRxpj6wwa-RmsE3x5m7JhcWm2hufu-CvD0-7DbP6fb16WVzv01rUag-NZqpnBeWoyxMprGomAUlgWUCpMh5hVygkJpVUHOptAGpp8-FXOsMmMrEgixPu3XwMQZjy0NwLYaxZFDOWsofLeWflqlwdyr44-E_9htKJmcF</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Iyer, Kartheik G</creator><creator>Tacchella, Sandro</creator><creator>Genel, Shy</creator><creator>Hayward, Christopher C</creator><creator>Hernquist, Lars</creator><creator>Brooks, Alyson M</creator><creator>Caplar, Neven</creator><creator>Davé, Romeel</creator><creator>Diemer, Benedikt</creator><creator>Forbes, John C</creator><creator>Gawiser, Eric</creator><creator>Somerville, Rachel S</creator><creator>Starkenburg, Tjitske K</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8224-4505</orcidid><orcidid>https://orcid.org/0000-0001-9298-3523</orcidid><orcidid>https://orcid.org/0000-0003-4073-3236</orcidid><orcidid>https://orcid.org/0000-0003-3287-5250</orcidid><orcidid>https://orcid.org/0000-0003-2842-9434</orcidid><orcidid>https://orcid.org/0000-0001-9568-7287</orcidid></search><sort><creationdate>20201001</creationdate><title>The diversity and variability of star formation histories in models of galaxy evolution</title><author>Iyer, Kartheik G ; Tacchella, Sandro ; Genel, Shy ; Hayward, Christopher C ; Hernquist, Lars ; Brooks, Alyson M ; Caplar, Neven ; Davé, Romeel ; Diemer, Benedikt ; Forbes, John C ; Gawiser, Eric ; Somerville, Rachel S ; Starkenburg, Tjitske K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ed19527f2a67e4da7b1f096014306352ba23a36d1b0c269de06d043368d401943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Kartheik G</creatorcontrib><creatorcontrib>Tacchella, Sandro</creatorcontrib><creatorcontrib>Genel, Shy</creatorcontrib><creatorcontrib>Hayward, Christopher C</creatorcontrib><creatorcontrib>Hernquist, Lars</creatorcontrib><creatorcontrib>Brooks, Alyson M</creatorcontrib><creatorcontrib>Caplar, Neven</creatorcontrib><creatorcontrib>Davé, Romeel</creatorcontrib><creatorcontrib>Diemer, Benedikt</creatorcontrib><creatorcontrib>Forbes, John C</creatorcontrib><creatorcontrib>Gawiser, Eric</creatorcontrib><creatorcontrib>Somerville, Rachel S</creatorcontrib><creatorcontrib>Starkenburg, Tjitske K</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iyer, Kartheik G</au><au>Tacchella, Sandro</au><au>Genel, Shy</au><au>Hayward, Christopher C</au><au>Hernquist, Lars</au><au>Brooks, Alyson M</au><au>Caplar, Neven</au><au>Davé, Romeel</au><au>Diemer, Benedikt</au><au>Forbes, John C</au><au>Gawiser, Eric</au><au>Somerville, Rachel S</au><au>Starkenburg, Tjitske K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The diversity and variability of star formation histories in models of galaxy evolution</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>498</volume><issue>1</issue><spage>430</spage><epage>463</epage><pages>430-463</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Understanding the variability of galaxy star formation histories (SFHs) across a range of time-scales provides insight into the underlying physical processes that regulate star formation within galaxies. We compile the SFHs of galaxies at z = 0 from an extensive set of models, ranging from cosmological hydrodynamical simulations (Illustris, IllustrisTNG, Mufasa, Simba, EAGLE), zoom simulations (FIRE-2, g14, and Marvel/Justice League), semi-analytic models (Santa Cruz SAM) and empirical models (UniverseMachine), and quantify the variability of these SFHs on different time-scales using the power spectral density (PSD) formalism. We find that the PSDs are well described by broken power laws, and variability on long time-scales (≳1 Gyr) accounts for most of the power in galaxy SFHs. Most hydrodynamical models show increased variability on shorter time-scales (≲300 Myr) with decreasing stellar mass. Quenching can induce ∼0.4−1 dex of additional power on time-scales &gt;1 Gyr. The dark matter accretion histories of galaxies have remarkably self-similar PSDs and are coherent with the in situ star formation on time-scales &gt;3 Gyr. There is considerable diversity among the different models in their (i) power due to star formation rate variability at a given time-scale, (ii) amount of correlation with adjacent time-scales (PSD slope), (iii) evolution of median PSDs with stellar mass, and (iv) presence and locations of breaks in the PSDs. The PSD framework is a useful space to study the SFHs of galaxies since model predictions vary widely. Observational constraints in this space will help constrain the relative strengths of the physical processes responsible for this variability.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/staa2150</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-8224-4505</orcidid><orcidid>https://orcid.org/0000-0001-9298-3523</orcidid><orcidid>https://orcid.org/0000-0003-4073-3236</orcidid><orcidid>https://orcid.org/0000-0003-3287-5250</orcidid><orcidid>https://orcid.org/0000-0003-2842-9434</orcidid><orcidid>https://orcid.org/0000-0001-9568-7287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2020-10, Vol.498 (1), p.430-463
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_staa2150
source Oxford Journals Open Access Collection
title The diversity and variability of star formation histories in models of galaxy evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20diversity%20and%20variability%20of%20star%20formation%20histories%20in%20models%20of%20galaxy%20evolution&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Iyer,%20Kartheik%20G&rft.date=2020-10-01&rft.volume=498&rft.issue=1&rft.spage=430&rft.epage=463&rft.pages=430-463&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/staa2150&rft_dat=%3Coup_TOX%3E10.1093/mnras/staa2150%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/staa2150&rfr_iscdi=true