Thermal instability revisited
ABSTRACT Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2020-03, Vol.492 (3), p.4484-4499 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4499 |
---|---|
container_issue | 3 |
container_start_page | 4484 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 492 |
creator | Falle, S A E G Wareing, C J Pittard, J M |
description | ABSTRACT
Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and we show that for gas cooling behind a shock, the usual analysis is only quantitatively valid for shocks that are just able to trigger a transition to the cold phase. A magnetic field can readily be included and we show that this does not change the stability criteria. By considering steady shock solutions, we show that almost all plausible initial conditions lead to a magnetically dominated state on the unstable part of the equilibrium curve. These results are used to analyse numerical calculations of perturbed steady shock solutions and of shocks interacting with a warm cloud. |
doi_str_mv | 10.1093/mnras/staa131 |
format | Article |
fullrecord | <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_staa131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/staa131</oup_id><sourcerecordid>10.1093/mnras/staa131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3fc77e81ec0036738a6fb1ad733db29e695e0de539b5391b0dd2d35c15691ae63</originalsourceid><addsrcrecordid>eNqNj01LAzEQQIMoWKtHj0KPgqyd2THZ3aMsfkHBSz0v2WQWI-1uSVKl_97ULV71EOby3kyeEJcItwgVzde912EeotZIeCQmSEpmeaXUsZgAkMzKAvFUnIXwAQB3lKuJuFq-s1_r1cz1SWzdysXdzPOnCy6yPRcnnV4FvjjMqXh7fFjWz9ni9emlvl9khkjFjDpTFFwim3RGFVRq1bWobUFk27xiVUkGy5KqNj1swdrckjQoVYWaFU1FNu41fgjBc9dsvFtrv2sQmn1b89PWHNoSfzPyX9wOXTCOe8O_ToqTWGIKBEDY0-X_6dpFHd3Q18O2j0m9HtVhu_njT9_ylnIW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal instability revisited</title><source>Oxford Open</source><creator>Falle, S A E G ; Wareing, C J ; Pittard, J M</creator><creatorcontrib>Falle, S A E G ; Wareing, C J ; Pittard, J M</creatorcontrib><description>ABSTRACT
Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and we show that for gas cooling behind a shock, the usual analysis is only quantitatively valid for shocks that are just able to trigger a transition to the cold phase. A magnetic field can readily be included and we show that this does not change the stability criteria. By considering steady shock solutions, we show that almost all plausible initial conditions lead to a magnetically dominated state on the unstable part of the equilibrium curve. These results are used to analyse numerical calculations of perturbed steady shock solutions and of shocks interacting with a warm cloud.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/staa131</identifier><language>eng</language><publisher>OXFORD: Oxford University Press</publisher><subject>Astronomy & Astrophysics ; Physical Sciences ; Science & Technology</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2020-03, Vol.492 (3), p.4484-4499</ispartof><rights>2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000518143200101</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c336t-3fc77e81ec0036738a6fb1ad733db29e695e0de539b5391b0dd2d35c15691ae63</citedby><cites>FETCH-LOGICAL-c336t-3fc77e81ec0036738a6fb1ad733db29e695e0de539b5391b0dd2d35c15691ae63</cites><orcidid>0000-0001-9641-0861 ; 0000-0003-2244-5070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1605,27929,27930,28253</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/staa131$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Falle, S A E G</creatorcontrib><creatorcontrib>Wareing, C J</creatorcontrib><creatorcontrib>Pittard, J M</creatorcontrib><title>Thermal instability revisited</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>MON NOT R ASTRON SOC</addtitle><description>ABSTRACT
Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and we show that for gas cooling behind a shock, the usual analysis is only quantitatively valid for shocks that are just able to trigger a transition to the cold phase. A magnetic field can readily be included and we show that this does not change the stability criteria. By considering steady shock solutions, we show that almost all plausible initial conditions lead to a magnetically dominated state on the unstable part of the equilibrium curve. These results are used to analyse numerical calculations of perturbed steady shock solutions and of shocks interacting with a warm cloud.</description><subject>Astronomy & Astrophysics</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNj01LAzEQQIMoWKtHj0KPgqyd2THZ3aMsfkHBSz0v2WQWI-1uSVKl_97ULV71EOby3kyeEJcItwgVzde912EeotZIeCQmSEpmeaXUsZgAkMzKAvFUnIXwAQB3lKuJuFq-s1_r1cz1SWzdysXdzPOnCy6yPRcnnV4FvjjMqXh7fFjWz9ni9emlvl9khkjFjDpTFFwim3RGFVRq1bWobUFk27xiVUkGy5KqNj1swdrckjQoVYWaFU1FNu41fgjBc9dsvFtrv2sQmn1b89PWHNoSfzPyX9wOXTCOe8O_ToqTWGIKBEDY0-X_6dpFHd3Q18O2j0m9HtVhu_njT9_ylnIW</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Falle, S A E G</creator><creator>Wareing, C J</creator><creator>Pittard, J M</creator><general>Oxford University Press</general><general>Oxford Univ Press</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9641-0861</orcidid><orcidid>https://orcid.org/0000-0003-2244-5070</orcidid></search><sort><creationdate>20200301</creationdate><title>Thermal instability revisited</title><author>Falle, S A E G ; Wareing, C J ; Pittard, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3fc77e81ec0036738a6fb1ad733db29e695e0de539b5391b0dd2d35c15691ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy & Astrophysics</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falle, S A E G</creatorcontrib><creatorcontrib>Wareing, C J</creatorcontrib><creatorcontrib>Pittard, J M</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Falle, S A E G</au><au>Wareing, C J</au><au>Pittard, J M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal instability revisited</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>MON NOT R ASTRON SOC</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>492</volume><issue>3</issue><spage>4484</spage><epage>4499</epage><pages>4484-4499</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and we show that for gas cooling behind a shock, the usual analysis is only quantitatively valid for shocks that are just able to trigger a transition to the cold phase. A magnetic field can readily be included and we show that this does not change the stability criteria. By considering steady shock solutions, we show that almost all plausible initial conditions lead to a magnetically dominated state on the unstable part of the equilibrium curve. These results are used to analyse numerical calculations of perturbed steady shock solutions and of shocks interacting with a warm cloud.</abstract><cop>OXFORD</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/staa131</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9641-0861</orcidid><orcidid>https://orcid.org/0000-0003-2244-5070</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2020-03, Vol.492 (3), p.4484-4499 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_staa131 |
source | Oxford Open |
subjects | Astronomy & Astrophysics Physical Sciences Science & Technology |
title | Thermal instability revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A48%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20instability%20revisited&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Falle,%20S%20A%20E%20G&rft.date=2020-03-01&rft.volume=492&rft.issue=3&rft.spage=4484&rft.epage=4499&rft.pages=4484-4499&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/staa131&rft_dat=%3Coup_TOX%3E10.1093/mnras/staa131%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/staa131&rfr_iscdi=true |