Thermal instability revisited

ABSTRACT Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-03, Vol.492 (3), p.4484-4499
Hauptverfasser: Falle, S A E G, Wareing, C J, Pittard, J M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4499
container_issue 3
container_start_page 4484
container_title Monthly notices of the Royal Astronomical Society
container_volume 492
creator Falle, S A E G
Wareing, C J
Pittard, J M
description ABSTRACT Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and we show that for gas cooling behind a shock, the usual analysis is only quantitatively valid for shocks that are just able to trigger a transition to the cold phase. A magnetic field can readily be included and we show that this does not change the stability criteria. By considering steady shock solutions, we show that almost all plausible initial conditions lead to a magnetically dominated state on the unstable part of the equilibrium curve. These results are used to analyse numerical calculations of perturbed steady shock solutions and of shocks interacting with a warm cloud.
doi_str_mv 10.1093/mnras/staa131
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_staa131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/staa131</oup_id><sourcerecordid>10.1093/mnras/staa131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3fc77e81ec0036738a6fb1ad733db29e695e0de539b5391b0dd2d35c15691ae63</originalsourceid><addsrcrecordid>eNqFj01LAzEQhoMouFaPHoUevcTO7Jjs5ijFLyh4qeeQj1mM7LYlWYX-e1fbu4fhvTzvOzxCXCPcIRhaDJvsyqKMziHhiaiQtJK10fpUVACkZNsgnouLUj4B4J5qXYmb9QfnwfXztJmKPvVp3M8zf6eSRo6X4qxzfeGrY87E-9PjevkiV2_Pr8uHlQxEepTUhabhFjlMb3RDrdOdRxcbouhrw9oohsiKjJ8OPcRYR1IBlTboWNNMyMNuyNtSMnd2l9Pg8t4i2F83--dmj24Tf3vgt1-7f9AfDVZRkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal instability revisited</title><source>Oxford University Press Open Access</source><creator>Falle, S A E G ; Wareing, C J ; Pittard, J M</creator><creatorcontrib>Falle, S A E G ; Wareing, C J ; Pittard, J M</creatorcontrib><description>ABSTRACT Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and we show that for gas cooling behind a shock, the usual analysis is only quantitatively valid for shocks that are just able to trigger a transition to the cold phase. A magnetic field can readily be included and we show that this does not change the stability criteria. By considering steady shock solutions, we show that almost all plausible initial conditions lead to a magnetically dominated state on the unstable part of the equilibrium curve. These results are used to analyse numerical calculations of perturbed steady shock solutions and of shocks interacting with a warm cloud.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/staa131</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2020-03, Vol.492 (3), p.4484-4499</ispartof><rights>2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3fc77e81ec0036738a6fb1ad733db29e695e0de539b5391b0dd2d35c15691ae63</citedby><cites>FETCH-LOGICAL-c336t-3fc77e81ec0036738a6fb1ad733db29e695e0de539b5391b0dd2d35c15691ae63</cites><orcidid>0000-0001-9641-0861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/staa131$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Falle, S A E G</creatorcontrib><creatorcontrib>Wareing, C J</creatorcontrib><creatorcontrib>Pittard, J M</creatorcontrib><title>Thermal instability revisited</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and we show that for gas cooling behind a shock, the usual analysis is only quantitatively valid for shocks that are just able to trigger a transition to the cold phase. A magnetic field can readily be included and we show that this does not change the stability criteria. By considering steady shock solutions, we show that almost all plausible initial conditions lead to a magnetically dominated state on the unstable part of the equilibrium curve. These results are used to analyse numerical calculations of perturbed steady shock solutions and of shocks interacting with a warm cloud.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFj01LAzEQhoMouFaPHoUevcTO7Jjs5ijFLyh4qeeQj1mM7LYlWYX-e1fbu4fhvTzvOzxCXCPcIRhaDJvsyqKMziHhiaiQtJK10fpUVACkZNsgnouLUj4B4J5qXYmb9QfnwfXztJmKPvVp3M8zf6eSRo6X4qxzfeGrY87E-9PjevkiV2_Pr8uHlQxEepTUhabhFjlMb3RDrdOdRxcbouhrw9oohsiKjJ8OPcRYR1IBlTboWNNMyMNuyNtSMnd2l9Pg8t4i2F83--dmj24Tf3vgt1-7f9AfDVZRkw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Falle, S A E G</creator><creator>Wareing, C J</creator><creator>Pittard, J M</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9641-0861</orcidid></search><sort><creationdate>20200301</creationdate><title>Thermal instability revisited</title><author>Falle, S A E G ; Wareing, C J ; Pittard, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3fc77e81ec0036738a6fb1ad733db29e695e0de539b5391b0dd2d35c15691ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falle, S A E G</creatorcontrib><creatorcontrib>Wareing, C J</creatorcontrib><creatorcontrib>Pittard, J M</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Falle, S A E G</au><au>Wareing, C J</au><au>Pittard, J M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal instability revisited</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>492</volume><issue>3</issue><spage>4484</spage><epage>4499</epage><pages>4484-4499</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Field’s linear analysis of thermal instability is repeated using methods related to Whitham’s theory of wave hierarchies, which brings out the physically relevant parameters in a much clearer way than in the original analysis. It is also used for the stability of non-equilibrium states and we show that for gas cooling behind a shock, the usual analysis is only quantitatively valid for shocks that are just able to trigger a transition to the cold phase. A magnetic field can readily be included and we show that this does not change the stability criteria. By considering steady shock solutions, we show that almost all plausible initial conditions lead to a magnetically dominated state on the unstable part of the equilibrium curve. These results are used to analyse numerical calculations of perturbed steady shock solutions and of shocks interacting with a warm cloud.</abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/staa131</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9641-0861</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2020-03, Vol.492 (3), p.4484-4499
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_staa131
source Oxford University Press Open Access
title Thermal instability revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20instability%20revisited&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Falle,%20S%20A%20E%20G&rft.date=2020-03-01&rft.volume=492&rft.issue=3&rft.spage=4484&rft.epage=4499&rft.pages=4484-4499&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/staa131&rft_dat=%3Coup_TOX%3E10.1093/mnras/staa131%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/staa131&rfr_iscdi=true