Uniform lyndon interpolation for basic non-normal modal and conditional logics
In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $...
Gespeichert in:
Veröffentlicht in: | Journal of logic and computation 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of logic and computation |
container_volume | |
creator | Akbar Tabatabai, Amirhossein Iemhoff, Rosalie Jalali, Raheleh |
description | In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $\textsf{CE}$, $\textsf{CM}$, $\textsf{CEN}$, $\textsf{CMN}$, $\textsf{CMC}$, $\textsf{CK}$, in addition to $\textsf{CKID}$ have that property. In particular, it implies that these logics have uniform interpolation (UIP). Although for some of them the latter is known, the fact that they have uniform LIP is new. Also, the proof-theoretic proofs of these facts are new, as well as the constructive way to explicitly compute the interpolants that they provide. On the negative side, it is shown that the logics $\textsf{CKCEM}$ and $\textsf{CKCEMID}$ enjoy UIP but not uniform LIP. Moreover, it is proved that the non-normal modal logics, $\textsf{EC}$ and $\textsf{ECN}$, and their conditional versions, $\textsf{CEC}$ and $\textsf{CECN}$, do not have Craig interpolation, and whence no uniform (Lyndon) interpolation. |
doi_str_mv | 10.1093/logcom/exae057 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exae057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_logcom_exae057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-81008631eaf364020773a1fa6676a7f62dbd854c9d7fbe4252d8f1c97b7566413</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKtb1_kD0-Z5M7OU4qNQdGOhuyGTh0RmkpLMwv57U9rNuRzO4R74EHqmZEVJx9dj-jFpWrs_7YhUN2hBBciGAz_cogXppGxUxw736KGUX0IIAyoW6HMfg095wuMp2hRxiLPLxzTqOVRXEzzoEgyOKTax9vSIp2Sr6mixSdGGc7H6uh5MeUR3Xo_FPV3vEu3fXr83H83u6327edk1hoKYm5YS0gKnTnsOgjCiFNfUawAFWnlgdrCtFKazyg9OMMls66np1KAkgKB8iVaXvyanUrLz_TGHSedTT0l_ptFfaPRXGvwfsDJWlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform lyndon interpolation for basic non-normal modal and conditional logics</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Akbar Tabatabai, Amirhossein ; Iemhoff, Rosalie ; Jalali, Raheleh</creator><creatorcontrib>Akbar Tabatabai, Amirhossein ; Iemhoff, Rosalie ; Jalali, Raheleh</creatorcontrib><description>In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $\textsf{CE}$, $\textsf{CM}$, $\textsf{CEN}$, $\textsf{CMN}$, $\textsf{CMC}$, $\textsf{CK}$, in addition to $\textsf{CKID}$ have that property. In particular, it implies that these logics have uniform interpolation (UIP). Although for some of them the latter is known, the fact that they have uniform LIP is new. Also, the proof-theoretic proofs of these facts are new, as well as the constructive way to explicitly compute the interpolants that they provide. On the negative side, it is shown that the logics $\textsf{CKCEM}$ and $\textsf{CKCEMID}$ enjoy UIP but not uniform LIP. Moreover, it is proved that the non-normal modal logics, $\textsf{EC}$ and $\textsf{ECN}$, and their conditional versions, $\textsf{CEC}$ and $\textsf{CECN}$, do not have Craig interpolation, and whence no uniform (Lyndon) interpolation.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exae057</identifier><language>eng</language><ispartof>Journal of logic and computation, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c164t-81008631eaf364020773a1fa6676a7f62dbd854c9d7fbe4252d8f1c97b7566413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akbar Tabatabai, Amirhossein</creatorcontrib><creatorcontrib>Iemhoff, Rosalie</creatorcontrib><creatorcontrib>Jalali, Raheleh</creatorcontrib><title>Uniform lyndon interpolation for basic non-normal modal and conditional logics</title><title>Journal of logic and computation</title><description>In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $\textsf{CE}$, $\textsf{CM}$, $\textsf{CEN}$, $\textsf{CMN}$, $\textsf{CMC}$, $\textsf{CK}$, in addition to $\textsf{CKID}$ have that property. In particular, it implies that these logics have uniform interpolation (UIP). Although for some of them the latter is known, the fact that they have uniform LIP is new. Also, the proof-theoretic proofs of these facts are new, as well as the constructive way to explicitly compute the interpolants that they provide. On the negative side, it is shown that the logics $\textsf{CKCEM}$ and $\textsf{CKCEMID}$ enjoy UIP but not uniform LIP. Moreover, it is proved that the non-normal modal logics, $\textsf{EC}$ and $\textsf{ECN}$, and their conditional versions, $\textsf{CEC}$ and $\textsf{CECN}$, do not have Craig interpolation, and whence no uniform (Lyndon) interpolation.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKtb1_kD0-Z5M7OU4qNQdGOhuyGTh0RmkpLMwv57U9rNuRzO4R74EHqmZEVJx9dj-jFpWrs_7YhUN2hBBciGAz_cogXppGxUxw736KGUX0IIAyoW6HMfg095wuMp2hRxiLPLxzTqOVRXEzzoEgyOKTax9vSIp2Sr6mixSdGGc7H6uh5MeUR3Xo_FPV3vEu3fXr83H83u6327edk1hoKYm5YS0gKnTnsOgjCiFNfUawAFWnlgdrCtFKazyg9OMMls66np1KAkgKB8iVaXvyanUrLz_TGHSedTT0l_ptFfaPRXGvwfsDJWlg</recordid><startdate>20241117</startdate><enddate>20241117</enddate><creator>Akbar Tabatabai, Amirhossein</creator><creator>Iemhoff, Rosalie</creator><creator>Jalali, Raheleh</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241117</creationdate><title>Uniform lyndon interpolation for basic non-normal modal and conditional logics</title><author>Akbar Tabatabai, Amirhossein ; Iemhoff, Rosalie ; Jalali, Raheleh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-81008631eaf364020773a1fa6676a7f62dbd854c9d7fbe4252d8f1c97b7566413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbar Tabatabai, Amirhossein</creatorcontrib><creatorcontrib>Iemhoff, Rosalie</creatorcontrib><creatorcontrib>Jalali, Raheleh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbar Tabatabai, Amirhossein</au><au>Iemhoff, Rosalie</au><au>Jalali, Raheleh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform lyndon interpolation for basic non-normal modal and conditional logics</atitle><jtitle>Journal of logic and computation</jtitle><date>2024-11-17</date><risdate>2024</risdate><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $\textsf{CE}$, $\textsf{CM}$, $\textsf{CEN}$, $\textsf{CMN}$, $\textsf{CMC}$, $\textsf{CK}$, in addition to $\textsf{CKID}$ have that property. In particular, it implies that these logics have uniform interpolation (UIP). Although for some of them the latter is known, the fact that they have uniform LIP is new. Also, the proof-theoretic proofs of these facts are new, as well as the constructive way to explicitly compute the interpolants that they provide. On the negative side, it is shown that the logics $\textsf{CKCEM}$ and $\textsf{CKCEMID}$ enjoy UIP but not uniform LIP. Moreover, it is proved that the non-normal modal logics, $\textsf{EC}$ and $\textsf{ECN}$, and their conditional versions, $\textsf{CEC}$ and $\textsf{CECN}$, do not have Craig interpolation, and whence no uniform (Lyndon) interpolation.</abstract><doi>10.1093/logcom/exae057</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-792X |
ispartof | Journal of logic and computation, 2024-11 |
issn | 0955-792X 1465-363X |
language | eng |
recordid | cdi_crossref_primary_10_1093_logcom_exae057 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Uniform lyndon interpolation for basic non-normal modal and conditional logics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20lyndon%20interpolation%20for%20basic%20non-normal%20modal%20and%20conditional%20logics&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Akbar%20Tabatabai,%20Amirhossein&rft.date=2024-11-17&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exae057&rft_dat=%3Ccrossref%3E10_1093_logcom_exae057%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |