Uniform lyndon interpolation for basic non-normal modal and conditional logics

In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2024-11
Hauptverfasser: Akbar Tabatabai, Amirhossein, Iemhoff, Rosalie, Jalali, Raheleh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of logic and computation
container_volume
creator Akbar Tabatabai, Amirhossein
Iemhoff, Rosalie
Jalali, Raheleh
description In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $\textsf{CE}$, $\textsf{CM}$, $\textsf{CEN}$, $\textsf{CMN}$, $\textsf{CMC}$, $\textsf{CK}$, in addition to $\textsf{CKID}$ have that property. In particular, it implies that these logics have uniform interpolation (UIP). Although for some of them the latter is known, the fact that they have uniform LIP is new. Also, the proof-theoretic proofs of these facts are new, as well as the constructive way to explicitly compute the interpolants that they provide. On the negative side, it is shown that the logics $\textsf{CKCEM}$ and $\textsf{CKCEMID}$ enjoy UIP but not uniform LIP. Moreover, it is proved that the non-normal modal logics, $\textsf{EC}$ and $\textsf{ECN}$, and their conditional versions, $\textsf{CEC}$ and $\textsf{CECN}$, do not have Craig interpolation, and whence no uniform (Lyndon) interpolation.
doi_str_mv 10.1093/logcom/exae057
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exae057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_logcom_exae057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-81008631eaf364020773a1fa6676a7f62dbd854c9d7fbe4252d8f1c97b7566413</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKtb1_kD0-Z5M7OU4qNQdGOhuyGTh0RmkpLMwv57U9rNuRzO4R74EHqmZEVJx9dj-jFpWrs_7YhUN2hBBciGAz_cogXppGxUxw736KGUX0IIAyoW6HMfg095wuMp2hRxiLPLxzTqOVRXEzzoEgyOKTax9vSIp2Sr6mixSdGGc7H6uh5MeUR3Xo_FPV3vEu3fXr83H83u6327edk1hoKYm5YS0gKnTnsOgjCiFNfUawAFWnlgdrCtFKazyg9OMMls66np1KAkgKB8iVaXvyanUrLz_TGHSedTT0l_ptFfaPRXGvwfsDJWlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform lyndon interpolation for basic non-normal modal and conditional logics</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Akbar Tabatabai, Amirhossein ; Iemhoff, Rosalie ; Jalali, Raheleh</creator><creatorcontrib>Akbar Tabatabai, Amirhossein ; Iemhoff, Rosalie ; Jalali, Raheleh</creatorcontrib><description>In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $\textsf{CE}$, $\textsf{CM}$, $\textsf{CEN}$, $\textsf{CMN}$, $\textsf{CMC}$, $\textsf{CK}$, in addition to $\textsf{CKID}$ have that property. In particular, it implies that these logics have uniform interpolation (UIP). Although for some of them the latter is known, the fact that they have uniform LIP is new. Also, the proof-theoretic proofs of these facts are new, as well as the constructive way to explicitly compute the interpolants that they provide. On the negative side, it is shown that the logics $\textsf{CKCEM}$ and $\textsf{CKCEMID}$ enjoy UIP but not uniform LIP. Moreover, it is proved that the non-normal modal logics, $\textsf{EC}$ and $\textsf{ECN}$, and their conditional versions, $\textsf{CEC}$ and $\textsf{CECN}$, do not have Craig interpolation, and whence no uniform (Lyndon) interpolation.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exae057</identifier><language>eng</language><ispartof>Journal of logic and computation, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c164t-81008631eaf364020773a1fa6676a7f62dbd854c9d7fbe4252d8f1c97b7566413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akbar Tabatabai, Amirhossein</creatorcontrib><creatorcontrib>Iemhoff, Rosalie</creatorcontrib><creatorcontrib>Jalali, Raheleh</creatorcontrib><title>Uniform lyndon interpolation for basic non-normal modal and conditional logics</title><title>Journal of logic and computation</title><description>In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $\textsf{CE}$, $\textsf{CM}$, $\textsf{CEN}$, $\textsf{CMN}$, $\textsf{CMC}$, $\textsf{CK}$, in addition to $\textsf{CKID}$ have that property. In particular, it implies that these logics have uniform interpolation (UIP). Although for some of them the latter is known, the fact that they have uniform LIP is new. Also, the proof-theoretic proofs of these facts are new, as well as the constructive way to explicitly compute the interpolants that they provide. On the negative side, it is shown that the logics $\textsf{CKCEM}$ and $\textsf{CKCEMID}$ enjoy UIP but not uniform LIP. Moreover, it is proved that the non-normal modal logics, $\textsf{EC}$ and $\textsf{ECN}$, and their conditional versions, $\textsf{CEC}$ and $\textsf{CECN}$, do not have Craig interpolation, and whence no uniform (Lyndon) interpolation.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKtb1_kD0-Z5M7OU4qNQdGOhuyGTh0RmkpLMwv57U9rNuRzO4R74EHqmZEVJx9dj-jFpWrs_7YhUN2hBBciGAz_cogXppGxUxw736KGUX0IIAyoW6HMfg095wuMp2hRxiLPLxzTqOVRXEzzoEgyOKTax9vSIp2Sr6mixSdGGc7H6uh5MeUR3Xo_FPV3vEu3fXr83H83u6327edk1hoKYm5YS0gKnTnsOgjCiFNfUawAFWnlgdrCtFKazyg9OMMls66np1KAkgKB8iVaXvyanUrLz_TGHSedTT0l_ptFfaPRXGvwfsDJWlg</recordid><startdate>20241117</startdate><enddate>20241117</enddate><creator>Akbar Tabatabai, Amirhossein</creator><creator>Iemhoff, Rosalie</creator><creator>Jalali, Raheleh</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241117</creationdate><title>Uniform lyndon interpolation for basic non-normal modal and conditional logics</title><author>Akbar Tabatabai, Amirhossein ; Iemhoff, Rosalie ; Jalali, Raheleh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-81008631eaf364020773a1fa6676a7f62dbd854c9d7fbe4252d8f1c97b7566413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbar Tabatabai, Amirhossein</creatorcontrib><creatorcontrib>Iemhoff, Rosalie</creatorcontrib><creatorcontrib>Jalali, Raheleh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbar Tabatabai, Amirhossein</au><au>Iemhoff, Rosalie</au><au>Jalali, Raheleh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform lyndon interpolation for basic non-normal modal and conditional logics</atitle><jtitle>Journal of logic and computation</jtitle><date>2024-11-17</date><risdate>2024</risdate><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>In this paper, a proof-theoretic method to prove uniform Lyndon interpolation (ULIP) for non-normal modal and conditional logics is introduced and applied to show that the logics, $\textsf{E}$, $\textsf{M}$, $\textsf{EN}$, $\textsf{MN}$, $\textsf{MC}$, $\textsf{K}$, and their conditional versions, $\textsf{CE}$, $\textsf{CM}$, $\textsf{CEN}$, $\textsf{CMN}$, $\textsf{CMC}$, $\textsf{CK}$, in addition to $\textsf{CKID}$ have that property. In particular, it implies that these logics have uniform interpolation (UIP). Although for some of them the latter is known, the fact that they have uniform LIP is new. Also, the proof-theoretic proofs of these facts are new, as well as the constructive way to explicitly compute the interpolants that they provide. On the negative side, it is shown that the logics $\textsf{CKCEM}$ and $\textsf{CKCEMID}$ enjoy UIP but not uniform LIP. Moreover, it is proved that the non-normal modal logics, $\textsf{EC}$ and $\textsf{ECN}$, and their conditional versions, $\textsf{CEC}$ and $\textsf{CECN}$, do not have Craig interpolation, and whence no uniform (Lyndon) interpolation.</abstract><doi>10.1093/logcom/exae057</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2024-11
issn 0955-792X
1465-363X
language eng
recordid cdi_crossref_primary_10_1093_logcom_exae057
source Oxford University Press Journals All Titles (1996-Current)
title Uniform lyndon interpolation for basic non-normal modal and conditional logics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20lyndon%20interpolation%20for%20basic%20non-normal%20modal%20and%20conditional%20logics&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Akbar%20Tabatabai,%20Amirhossein&rft.date=2024-11-17&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exae057&rft_dat=%3Ccrossref%3E10_1093_logcom_exae057%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true