Linear logic in a refutational setting

Abstract Sequent-style refutation calculi with non-invertible rules are challenging to design because multiple proof-search strategies need to be simultaneously verified. In this paper, we present a refutation calculus for the multiplicative–additive fragment of linear logic ($\textsf{MALL}$) whose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2024-10, Vol.34 (7), p.1249-1273
Hauptverfasser: Piazza, Mario, Pulcini, Gabriele, Tesi, Matteo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Sequent-style refutation calculi with non-invertible rules are challenging to design because multiple proof-search strategies need to be simultaneously verified. In this paper, we present a refutation calculus for the multiplicative–additive fragment of linear logic ($\textsf{MALL}$) whose binary rule for the multiplicative conjunction $(\otimes )$ and the unary rule for the additive disjunction $(\oplus )$ fail invertibility. Specifically, we design a cut-free hypersequent calculus $\textsf{HMALL}$, which is equivalent to $\textsf{MALL}$, and obtained by transforming the usual tree-like shape of derivations into a parallel and linear structure. Next, we develop a refutation calculus $\overline{\textsf{HMALL}}$ based on the calculus $\textsf{HMALL}$. As far as we know, this is also the first refutation calculus for a substructural logic. Finally, we offer a fractional semantics for $\textsf{MALL}$—whereby its formulas are interpreted by a rational number in the closed interval [0, 1] —thus extending to the substructural landscape the project of fractional semantics already pursued for classical and modal logics.
ISSN:0955-792X
1465-363X
DOI:10.1093/logcom/exad048