Algebraic tools for default modal systems
Abstract Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logi...
Gespeichert in:
Veröffentlicht in: | Journal of logic and computation 2023-08, Vol.33 (6), p.1301-1325 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1325 |
---|---|
container_issue | 6 |
container_start_page | 1301 |
container_title | Journal of logic and computation |
container_volume | 33 |
creator | Cassano, Valentin Fervari, Raul Areces, Carlos Castro, Pablo F |
description | Abstract
Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logics on modal logics. First, we present these default logics syntactically. Then, we elaborate on an algebraic counterpart. More precisely, we extend the notion of a modal algebra to accommodate for defaults and extensions. Our algebraic view of default logics concludes with an algebraic completeness result and a way of comparing default logics borrowing ideas from the concept of bisimulation in modal logic. To our knowledge, this take on default logics approach is novel. Interestingly, it also lays the groundwork for studying default logics from a dynamic logic perspective. |
doi_str_mv | 10.1093/logcom/exac051 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exac051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/logcom/exac051</oup_id><sourcerecordid>10.1093/logcom/exac051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-ead1f7411b817599eaf99f20596671c9cc95efded09ffe0d0fecf929a1adc33d3</originalsourceid><addsrcrecordid>eNqFj79rwzAQRkVpoW7atbPXDE7uLMvOjSH0FwS6tJDNKNJdSJFRkBxo_vu2JHunb_neg6fUI8IMgfQ8xJ2Lw5y_rQODV6rApjWVbvXmWhVAxlQd1ZtbdZfzFwDULTaFmi7DjrfJ7l05xhhyKTGVnsUew1gO0dtQ5lMeecj36kZsyPxw2Yn6fH76WL1W6_eXt9VyXbm6XowVW4_SNYjbBXaGiK0QSQ2G2rZDR86RYfHsgUQYPAg7oZosWu-09nqiZmevSzHnxNIf0n6w6dQj9H-h_Tm0v4T-AtMzEI-H_74_UqpYSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic tools for default modal systems</title><source>Oxford University Press Journals</source><creator>Cassano, Valentin ; Fervari, Raul ; Areces, Carlos ; Castro, Pablo F</creator><creatorcontrib>Cassano, Valentin ; Fervari, Raul ; Areces, Carlos ; Castro, Pablo F</creatorcontrib><description>Abstract
Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logics on modal logics. First, we present these default logics syntactically. Then, we elaborate on an algebraic counterpart. More precisely, we extend the notion of a modal algebra to accommodate for defaults and extensions. Our algebraic view of default logics concludes with an algebraic completeness result and a way of comparing default logics borrowing ideas from the concept of bisimulation in modal logic. To our knowledge, this take on default logics approach is novel. Interestingly, it also lays the groundwork for studying default logics from a dynamic logic perspective.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exac051</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of logic and computation, 2023-08, Vol.33 (6), p.1301-1325</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-ead1f7411b817599eaf99f20596671c9cc95efded09ffe0d0fecf929a1adc33d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1585,27926,27927</link.rule.ids></links><search><creatorcontrib>Cassano, Valentin</creatorcontrib><creatorcontrib>Fervari, Raul</creatorcontrib><creatorcontrib>Areces, Carlos</creatorcontrib><creatorcontrib>Castro, Pablo F</creatorcontrib><title>Algebraic tools for default modal systems</title><title>Journal of logic and computation</title><description>Abstract
Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logics on modal logics. First, we present these default logics syntactically. Then, we elaborate on an algebraic counterpart. More precisely, we extend the notion of a modal algebra to accommodate for defaults and extensions. Our algebraic view of default logics concludes with an algebraic completeness result and a way of comparing default logics borrowing ideas from the concept of bisimulation in modal logic. To our knowledge, this take on default logics approach is novel. Interestingly, it also lays the groundwork for studying default logics from a dynamic logic perspective.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFj79rwzAQRkVpoW7atbPXDE7uLMvOjSH0FwS6tJDNKNJdSJFRkBxo_vu2JHunb_neg6fUI8IMgfQ8xJ2Lw5y_rQODV6rApjWVbvXmWhVAxlQd1ZtbdZfzFwDULTaFmi7DjrfJ7l05xhhyKTGVnsUew1gO0dtQ5lMeecj36kZsyPxw2Yn6fH76WL1W6_eXt9VyXbm6XowVW4_SNYjbBXaGiK0QSQ2G2rZDR86RYfHsgUQYPAg7oZosWu-09nqiZmevSzHnxNIf0n6w6dQj9H-h_Tm0v4T-AtMzEI-H_74_UqpYSw</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Cassano, Valentin</creator><creator>Fervari, Raul</creator><creator>Areces, Carlos</creator><creator>Castro, Pablo F</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230824</creationdate><title>Algebraic tools for default modal systems</title><author>Cassano, Valentin ; Fervari, Raul ; Areces, Carlos ; Castro, Pablo F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-ead1f7411b817599eaf99f20596671c9cc95efded09ffe0d0fecf929a1adc33d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassano, Valentin</creatorcontrib><creatorcontrib>Fervari, Raul</creatorcontrib><creatorcontrib>Areces, Carlos</creatorcontrib><creatorcontrib>Castro, Pablo F</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassano, Valentin</au><au>Fervari, Raul</au><au>Areces, Carlos</au><au>Castro, Pablo F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic tools for default modal systems</atitle><jtitle>Journal of logic and computation</jtitle><date>2023-08-24</date><risdate>2023</risdate><volume>33</volume><issue>6</issue><spage>1301</spage><epage>1325</epage><pages>1301-1325</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>Abstract
Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logics on modal logics. First, we present these default logics syntactically. Then, we elaborate on an algebraic counterpart. More precisely, we extend the notion of a modal algebra to accommodate for defaults and extensions. Our algebraic view of default logics concludes with an algebraic completeness result and a way of comparing default logics borrowing ideas from the concept of bisimulation in modal logic. To our knowledge, this take on default logics approach is novel. Interestingly, it also lays the groundwork for studying default logics from a dynamic logic perspective.</abstract><pub>Oxford University Press</pub><doi>10.1093/logcom/exac051</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-792X |
ispartof | Journal of logic and computation, 2023-08, Vol.33 (6), p.1301-1325 |
issn | 0955-792X 1465-363X |
language | eng |
recordid | cdi_crossref_primary_10_1093_logcom_exac051 |
source | Oxford University Press Journals |
title | Algebraic tools for default modal systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20tools%20for%20default%20modal%20systems&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Cassano,%20Valentin&rft.date=2023-08-24&rft.volume=33&rft.issue=6&rft.spage=1301&rft.epage=1325&rft.pages=1301-1325&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exac051&rft_dat=%3Coup_cross%3E10.1093/logcom/exac051%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/logcom/exac051&rfr_iscdi=true |