Algebraic tools for default modal systems

Abstract Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2023-08, Vol.33 (6), p.1301-1325
Hauptverfasser: Cassano, Valentin, Fervari, Raul, Areces, Carlos, Castro, Pablo F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1325
container_issue 6
container_start_page 1301
container_title Journal of logic and computation
container_volume 33
creator Cassano, Valentin
Fervari, Raul
Areces, Carlos
Castro, Pablo F
description Abstract Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logics on modal logics. First, we present these default logics syntactically. Then, we elaborate on an algebraic counterpart. More precisely, we extend the notion of a modal algebra to accommodate for defaults and extensions. Our algebraic view of default logics concludes with an algebraic completeness result and a way of comparing default logics borrowing ideas from the concept of bisimulation in modal logic. To our knowledge, this take on default logics approach is novel. Interestingly, it also lays the groundwork for studying default logics from a dynamic logic perspective.
doi_str_mv 10.1093/logcom/exac051
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exac051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/logcom/exac051</oup_id><sourcerecordid>10.1093/logcom/exac051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-ead1f7411b817599eaf99f20596671c9cc95efded09ffe0d0fecf929a1adc33d3</originalsourceid><addsrcrecordid>eNqFj79rwzAQRkVpoW7atbPXDE7uLMvOjSH0FwS6tJDNKNJdSJFRkBxo_vu2JHunb_neg6fUI8IMgfQ8xJ2Lw5y_rQODV6rApjWVbvXmWhVAxlQd1ZtbdZfzFwDULTaFmi7DjrfJ7l05xhhyKTGVnsUew1gO0dtQ5lMeecj36kZsyPxw2Yn6fH76WL1W6_eXt9VyXbm6XowVW4_SNYjbBXaGiK0QSQ2G2rZDR86RYfHsgUQYPAg7oZosWu-09nqiZmevSzHnxNIf0n6w6dQj9H-h_Tm0v4T-AtMzEI-H_74_UqpYSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic tools for default modal systems</title><source>Oxford University Press Journals</source><creator>Cassano, Valentin ; Fervari, Raul ; Areces, Carlos ; Castro, Pablo F</creator><creatorcontrib>Cassano, Valentin ; Fervari, Raul ; Areces, Carlos ; Castro, Pablo F</creatorcontrib><description>Abstract Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logics on modal logics. First, we present these default logics syntactically. Then, we elaborate on an algebraic counterpart. More precisely, we extend the notion of a modal algebra to accommodate for defaults and extensions. Our algebraic view of default logics concludes with an algebraic completeness result and a way of comparing default logics borrowing ideas from the concept of bisimulation in modal logic. To our knowledge, this take on default logics approach is novel. Interestingly, it also lays the groundwork for studying default logics from a dynamic logic perspective.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exac051</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of logic and computation, 2023-08, Vol.33 (6), p.1301-1325</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-ead1f7411b817599eaf99f20596671c9cc95efded09ffe0d0fecf929a1adc33d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,1585,27926,27927</link.rule.ids></links><search><creatorcontrib>Cassano, Valentin</creatorcontrib><creatorcontrib>Fervari, Raul</creatorcontrib><creatorcontrib>Areces, Carlos</creatorcontrib><creatorcontrib>Castro, Pablo F</creatorcontrib><title>Algebraic tools for default modal systems</title><title>Journal of logic and computation</title><description>Abstract Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logics on modal logics. First, we present these default logics syntactically. Then, we elaborate on an algebraic counterpart. More precisely, we extend the notion of a modal algebra to accommodate for defaults and extensions. Our algebraic view of default logics concludes with an algebraic completeness result and a way of comparing default logics borrowing ideas from the concept of bisimulation in modal logic. To our knowledge, this take on default logics approach is novel. Interestingly, it also lays the groundwork for studying default logics from a dynamic logic perspective.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFj79rwzAQRkVpoW7atbPXDE7uLMvOjSH0FwS6tJDNKNJdSJFRkBxo_vu2JHunb_neg6fUI8IMgfQ8xJ2Lw5y_rQODV6rApjWVbvXmWhVAxlQd1ZtbdZfzFwDULTaFmi7DjrfJ7l05xhhyKTGVnsUew1gO0dtQ5lMeecj36kZsyPxw2Yn6fH76WL1W6_eXt9VyXbm6XowVW4_SNYjbBXaGiK0QSQ2G2rZDR86RYfHsgUQYPAg7oZosWu-09nqiZmevSzHnxNIf0n6w6dQj9H-h_Tm0v4T-AtMzEI-H_74_UqpYSw</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Cassano, Valentin</creator><creator>Fervari, Raul</creator><creator>Areces, Carlos</creator><creator>Castro, Pablo F</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230824</creationdate><title>Algebraic tools for default modal systems</title><author>Cassano, Valentin ; Fervari, Raul ; Areces, Carlos ; Castro, Pablo F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-ead1f7411b817599eaf99f20596671c9cc95efded09ffe0d0fecf929a1adc33d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassano, Valentin</creatorcontrib><creatorcontrib>Fervari, Raul</creatorcontrib><creatorcontrib>Areces, Carlos</creatorcontrib><creatorcontrib>Castro, Pablo F</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassano, Valentin</au><au>Fervari, Raul</au><au>Areces, Carlos</au><au>Castro, Pablo F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic tools for default modal systems</atitle><jtitle>Journal of logic and computation</jtitle><date>2023-08-24</date><risdate>2023</risdate><volume>33</volume><issue>6</issue><spage>1301</spage><epage>1325</epage><pages>1301-1325</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>Abstract Default Logics are a family of non-monotonic formalisms having so-called defaults and extensions as their common foundation. Traditionally, default logics have been defined and dealt with via syntactic notions of consequence in propositional or first-order logic. Here, we build default logics on modal logics. First, we present these default logics syntactically. Then, we elaborate on an algebraic counterpart. More precisely, we extend the notion of a modal algebra to accommodate for defaults and extensions. Our algebraic view of default logics concludes with an algebraic completeness result and a way of comparing default logics borrowing ideas from the concept of bisimulation in modal logic. To our knowledge, this take on default logics approach is novel. Interestingly, it also lays the groundwork for studying default logics from a dynamic logic perspective.</abstract><pub>Oxford University Press</pub><doi>10.1093/logcom/exac051</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2023-08, Vol.33 (6), p.1301-1325
issn 0955-792X
1465-363X
language eng
recordid cdi_crossref_primary_10_1093_logcom_exac051
source Oxford University Press Journals
title Algebraic tools for default modal systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20tools%20for%20default%20modal%20systems&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Cassano,%20Valentin&rft.date=2023-08-24&rft.volume=33&rft.issue=6&rft.spage=1301&rft.epage=1325&rft.pages=1301-1325&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exac051&rft_dat=%3Coup_cross%3E10.1093/logcom/exac051%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/logcom/exac051&rfr_iscdi=true