On the Turing complexity of learning finite families of algebraic structures

Abstract In previous work, we have combined computable structure theory and algorithmic learning theory to study which families of algebraic structures are learnable in the limit (up to isomorphism). In this paper, we measure the computational power that is needed to learn finite families of structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2021-10, Vol.31 (7), p.1891-1900
Hauptverfasser: Bazhenov, Nikolay, San Mauro, Luca
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1900
container_issue 7
container_start_page 1891
container_title Journal of logic and computation
container_volume 31
creator Bazhenov, Nikolay
San Mauro, Luca
description Abstract In previous work, we have combined computable structure theory and algorithmic learning theory to study which families of algebraic structures are learnable in the limit (up to isomorphism). In this paper, we measure the computational power that is needed to learn finite families of structures. In particular, we prove that, if a family of structures is both finite and learnable, then any oracle which computes the Halting set is able to achieve such a learning. On the other hand, we construct a pair of structures which is learnable but no computable learner can learn it.
doi_str_mv 10.1093/logcom/exab044
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exab044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/logcom/exab044</oup_id><sourcerecordid>10.1093/logcom/exab044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-de4139ea5863e7fbfef33c834ee28c822df5e914f1b724031522518a21e650123</originalsourceid><addsrcrecordid>eNqFkDlrwzAYhkVpoW7atbPWDk50-hhL6AWGLClkM7LyyVWRDyQZkn_fGGfv9MJ7DQ9Cz5SsKSn5xg2tHroNnFRDhLhBCRWZTHnGD7coIaWUaV6ywz16COGXEMIyKhJU7XocfwDvJ2_7Fl8ORgcnG894MNiB8v1sG9vbCNiozjoLYc6Ua6Hxymocop90nDyER3RnlAvwdNUV-n5_228_02r38bV9rVLNch7TIwjKS1CyyDjkpjFgONcFFwCs0AVjRyOhpMLQJmeCcCoZk7RQjEImCWV8hdbLr_ZDCB5MPXrbKX-uKalnFvXCor6yuAxelsEwjf91_wC9pGPK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Turing complexity of learning finite families of algebraic structures</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bazhenov, Nikolay ; San Mauro, Luca</creator><creatorcontrib>Bazhenov, Nikolay ; San Mauro, Luca</creatorcontrib><description>Abstract In previous work, we have combined computable structure theory and algorithmic learning theory to study which families of algebraic structures are learnable in the limit (up to isomorphism). In this paper, we measure the computational power that is needed to learn finite families of structures. In particular, we prove that, if a family of structures is both finite and learnable, then any oracle which computes the Halting set is able to achieve such a learning. On the other hand, we construct a pair of structures which is learnable but no computable learner can learn it.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exab044</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of logic and computation, 2021-10, Vol.31 (7), p.1891-1900</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-de4139ea5863e7fbfef33c834ee28c822df5e914f1b724031522518a21e650123</citedby><cites>FETCH-LOGICAL-c273t-de4139ea5863e7fbfef33c834ee28c822df5e914f1b724031522518a21e650123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Bazhenov, Nikolay</creatorcontrib><creatorcontrib>San Mauro, Luca</creatorcontrib><title>On the Turing complexity of learning finite families of algebraic structures</title><title>Journal of logic and computation</title><description>Abstract In previous work, we have combined computable structure theory and algorithmic learning theory to study which families of algebraic structures are learnable in the limit (up to isomorphism). In this paper, we measure the computational power that is needed to learn finite families of structures. In particular, we prove that, if a family of structures is both finite and learnable, then any oracle which computes the Halting set is able to achieve such a learning. On the other hand, we construct a pair of structures which is learnable but no computable learner can learn it.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkDlrwzAYhkVpoW7atbPWDk50-hhL6AWGLClkM7LyyVWRDyQZkn_fGGfv9MJ7DQ9Cz5SsKSn5xg2tHroNnFRDhLhBCRWZTHnGD7coIaWUaV6ywz16COGXEMIyKhJU7XocfwDvJ2_7Fl8ORgcnG894MNiB8v1sG9vbCNiozjoLYc6Ua6Hxymocop90nDyER3RnlAvwdNUV-n5_228_02r38bV9rVLNch7TIwjKS1CyyDjkpjFgONcFFwCs0AVjRyOhpMLQJmeCcCoZk7RQjEImCWV8hdbLr_ZDCB5MPXrbKX-uKalnFvXCor6yuAxelsEwjf91_wC9pGPK</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Bazhenov, Nikolay</creator><creator>San Mauro, Luca</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>On the Turing complexity of learning finite families of algebraic structures</title><author>Bazhenov, Nikolay ; San Mauro, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-de4139ea5863e7fbfef33c834ee28c822df5e914f1b724031522518a21e650123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazhenov, Nikolay</creatorcontrib><creatorcontrib>San Mauro, Luca</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazhenov, Nikolay</au><au>San Mauro, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Turing complexity of learning finite families of algebraic structures</atitle><jtitle>Journal of logic and computation</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>7</issue><spage>1891</spage><epage>1900</epage><pages>1891-1900</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>Abstract In previous work, we have combined computable structure theory and algorithmic learning theory to study which families of algebraic structures are learnable in the limit (up to isomorphism). In this paper, we measure the computational power that is needed to learn finite families of structures. In particular, we prove that, if a family of structures is both finite and learnable, then any oracle which computes the Halting set is able to achieve such a learning. On the other hand, we construct a pair of structures which is learnable but no computable learner can learn it.</abstract><pub>Oxford University Press</pub><doi>10.1093/logcom/exab044</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2021-10, Vol.31 (7), p.1891-1900
issn 0955-792X
1465-363X
language eng
recordid cdi_crossref_primary_10_1093_logcom_exab044
source Oxford University Press Journals All Titles (1996-Current)
title On the Turing complexity of learning finite families of algebraic structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Turing%20complexity%20of%20learning%20finite%20families%20of%20algebraic%20structures&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Bazhenov,%20Nikolay&rft.date=2021-10-01&rft.volume=31&rft.issue=7&rft.spage=1891&rft.epage=1900&rft.pages=1891-1900&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exab044&rft_dat=%3Coup_cross%3E10.1093/logcom/exab044%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/logcom/exab044&rfr_iscdi=true