Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH

Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life metabolism 2024-10, Vol.3 (5)
Hauptverfasser: Liang, Ningning, Yuan, Xuan, Zhang, Lili, Shen, Xia, Zhong, Shanshan, Li, Luxiao, Li, Rui, Xu, Xiaodong, Chen, Xin, Yin, Chunzhao, Guo, Shuyuan, Ge, Jing, Zhu, Mingjiang, Tao, Yongzhen, Chen, Shiting, Qian, Yongbing, Dalbeth, Nicola, Merriman, Tony R, Terkeltaub, Robert, Li, Changgui, Xia, Qiang, Yin, Huiyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Life metabolism
container_volume 3
creator Liang, Ningning
Yuan, Xuan
Zhang, Lili
Shen, Xia
Zhong, Shanshan
Li, Luxiao
Li, Rui
Xu, Xiaodong
Chen, Xin
Yin, Chunzhao
Guo, Shuyuan
Ge, Jing
Zhu, Mingjiang
Tao, Yongzhen
Chen, Shiting
Qian, Yongbing
Dalbeth, Nicola
Merriman, Tony R
Terkeltaub, Robert
Li, Changgui
Xia, Qiang
Yin, Huiyong
description Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout groups compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope-labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5ʹ-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from the blood to the liver and activation of urate biosynthesis. Our findings were further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors. Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.
doi_str_mv 10.1093/lifemeta/loae018
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_lifemeta_loae018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_lifemeta_loae018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c168t-18b8e8dbdeba4014c700bcc4ae30e053945aaf05ecde01443d2a5e48e96cdb33</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EElXpnqUvEDqO7SZdokJppQo2XbCLJvakMUqTynYqeiwuwpkIUCRW8_OenvQ-xm4F3AmYy2njKtpTxGnTIYHIL9gozbROIJVw-W-_ZpMQ3gAgzTOZ6mzEjkuM8cTROMu7d2cxuq5NXGt7Q5av1stEfH4McnTHH4lXg7VxESMFXtNheBre--Hk4dTGmoILPNa-63c17w-edn0zeNodf97qRcqxtfz1YXXDripsAk3Oc8y2y8ftYpVsXp7Wi_tNYsQsj4nIy5xyW1oqUYFQJgMojVFIEgi0nCuNWIEmY4faSkmboiaV03xmbCnlmMFvrPFdCJ6q4uDdHv2pEFB8kyv-yBVncvILpiZoBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><creator>Liang, Ningning ; Yuan, Xuan ; Zhang, Lili ; Shen, Xia ; Zhong, Shanshan ; Li, Luxiao ; Li, Rui ; Xu, Xiaodong ; Chen, Xin ; Yin, Chunzhao ; Guo, Shuyuan ; Ge, Jing ; Zhu, Mingjiang ; Tao, Yongzhen ; Chen, Shiting ; Qian, Yongbing ; Dalbeth, Nicola ; Merriman, Tony R ; Terkeltaub, Robert ; Li, Changgui ; Xia, Qiang ; Yin, Huiyong</creator><creatorcontrib>Liang, Ningning ; Yuan, Xuan ; Zhang, Lili ; Shen, Xia ; Zhong, Shanshan ; Li, Luxiao ; Li, Rui ; Xu, Xiaodong ; Chen, Xin ; Yin, Chunzhao ; Guo, Shuyuan ; Ge, Jing ; Zhu, Mingjiang ; Tao, Yongzhen ; Chen, Shiting ; Qian, Yongbing ; Dalbeth, Nicola ; Merriman, Tony R ; Terkeltaub, Robert ; Li, Changgui ; Xia, Qiang ; Yin, Huiyong</creatorcontrib><description>Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout groups compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope-labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5ʹ-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from the blood to the liver and activation of urate biosynthesis. Our findings were further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors. Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.</description><identifier>ISSN: 2755-0230</identifier><identifier>EISSN: 2755-0230</identifier><identifier>DOI: 10.1093/lifemeta/loae018</identifier><language>eng</language><ispartof>Life metabolism, 2024-10, Vol.3 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c168t-18b8e8dbdeba4014c700bcc4ae30e053945aaf05ecde01443d2a5e48e96cdb33</cites><orcidid>0000-0001-7049-1560 ; 0000-0003-0844-8726 ; 0000-0002-3199-287X ; 0000-0002-4622-3731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Liang, Ningning</creatorcontrib><creatorcontrib>Yuan, Xuan</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Shen, Xia</creatorcontrib><creatorcontrib>Zhong, Shanshan</creatorcontrib><creatorcontrib>Li, Luxiao</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Yin, Chunzhao</creatorcontrib><creatorcontrib>Guo, Shuyuan</creatorcontrib><creatorcontrib>Ge, Jing</creatorcontrib><creatorcontrib>Zhu, Mingjiang</creatorcontrib><creatorcontrib>Tao, Yongzhen</creatorcontrib><creatorcontrib>Chen, Shiting</creatorcontrib><creatorcontrib>Qian, Yongbing</creatorcontrib><creatorcontrib>Dalbeth, Nicola</creatorcontrib><creatorcontrib>Merriman, Tony R</creatorcontrib><creatorcontrib>Terkeltaub, Robert</creatorcontrib><creatorcontrib>Li, Changgui</creatorcontrib><creatorcontrib>Xia, Qiang</creatorcontrib><creatorcontrib>Yin, Huiyong</creatorcontrib><title>Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH</title><title>Life metabolism</title><description>Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout groups compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope-labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5ʹ-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from the blood to the liver and activation of urate biosynthesis. Our findings were further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors. Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.</description><issn>2755-0230</issn><issn>2755-0230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQhS0EElXpnqUvEDqO7SZdokJppQo2XbCLJvakMUqTynYqeiwuwpkIUCRW8_OenvQ-xm4F3AmYy2njKtpTxGnTIYHIL9gozbROIJVw-W-_ZpMQ3gAgzTOZ6mzEjkuM8cTROMu7d2cxuq5NXGt7Q5av1stEfH4McnTHH4lXg7VxESMFXtNheBre--Hk4dTGmoILPNa-63c17w-edn0zeNodf97qRcqxtfz1YXXDripsAk3Oc8y2y8ftYpVsXp7Wi_tNYsQsj4nIy5xyW1oqUYFQJgMojVFIEgi0nCuNWIEmY4faSkmboiaV03xmbCnlmMFvrPFdCJ6q4uDdHv2pEFB8kyv-yBVncvILpiZoBw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Liang, Ningning</creator><creator>Yuan, Xuan</creator><creator>Zhang, Lili</creator><creator>Shen, Xia</creator><creator>Zhong, Shanshan</creator><creator>Li, Luxiao</creator><creator>Li, Rui</creator><creator>Xu, Xiaodong</creator><creator>Chen, Xin</creator><creator>Yin, Chunzhao</creator><creator>Guo, Shuyuan</creator><creator>Ge, Jing</creator><creator>Zhu, Mingjiang</creator><creator>Tao, Yongzhen</creator><creator>Chen, Shiting</creator><creator>Qian, Yongbing</creator><creator>Dalbeth, Nicola</creator><creator>Merriman, Tony R</creator><creator>Terkeltaub, Robert</creator><creator>Li, Changgui</creator><creator>Xia, Qiang</creator><creator>Yin, Huiyong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7049-1560</orcidid><orcidid>https://orcid.org/0000-0003-0844-8726</orcidid><orcidid>https://orcid.org/0000-0002-3199-287X</orcidid><orcidid>https://orcid.org/0000-0002-4622-3731</orcidid></search><sort><creationdate>20241001</creationdate><title>Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH</title><author>Liang, Ningning ; Yuan, Xuan ; Zhang, Lili ; Shen, Xia ; Zhong, Shanshan ; Li, Luxiao ; Li, Rui ; Xu, Xiaodong ; Chen, Xin ; Yin, Chunzhao ; Guo, Shuyuan ; Ge, Jing ; Zhu, Mingjiang ; Tao, Yongzhen ; Chen, Shiting ; Qian, Yongbing ; Dalbeth, Nicola ; Merriman, Tony R ; Terkeltaub, Robert ; Li, Changgui ; Xia, Qiang ; Yin, Huiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c168t-18b8e8dbdeba4014c700bcc4ae30e053945aaf05ecde01443d2a5e48e96cdb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Ningning</creatorcontrib><creatorcontrib>Yuan, Xuan</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Shen, Xia</creatorcontrib><creatorcontrib>Zhong, Shanshan</creatorcontrib><creatorcontrib>Li, Luxiao</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Xu, Xiaodong</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Yin, Chunzhao</creatorcontrib><creatorcontrib>Guo, Shuyuan</creatorcontrib><creatorcontrib>Ge, Jing</creatorcontrib><creatorcontrib>Zhu, Mingjiang</creatorcontrib><creatorcontrib>Tao, Yongzhen</creatorcontrib><creatorcontrib>Chen, Shiting</creatorcontrib><creatorcontrib>Qian, Yongbing</creatorcontrib><creatorcontrib>Dalbeth, Nicola</creatorcontrib><creatorcontrib>Merriman, Tony R</creatorcontrib><creatorcontrib>Terkeltaub, Robert</creatorcontrib><creatorcontrib>Li, Changgui</creatorcontrib><creatorcontrib>Xia, Qiang</creatorcontrib><creatorcontrib>Yin, Huiyong</creatorcontrib><collection>CrossRef</collection><jtitle>Life metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Ningning</au><au>Yuan, Xuan</au><au>Zhang, Lili</au><au>Shen, Xia</au><au>Zhong, Shanshan</au><au>Li, Luxiao</au><au>Li, Rui</au><au>Xu, Xiaodong</au><au>Chen, Xin</au><au>Yin, Chunzhao</au><au>Guo, Shuyuan</au><au>Ge, Jing</au><au>Zhu, Mingjiang</au><au>Tao, Yongzhen</au><au>Chen, Shiting</au><au>Qian, Yongbing</au><au>Dalbeth, Nicola</au><au>Merriman, Tony R</au><au>Terkeltaub, Robert</au><au>Li, Changgui</au><au>Xia, Qiang</au><au>Yin, Huiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH</atitle><jtitle>Life metabolism</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>3</volume><issue>5</issue><issn>2755-0230</issn><eissn>2755-0230</eissn><abstract>Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout groups compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope-labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5ʹ-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from the blood to the liver and activation of urate biosynthesis. Our findings were further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors. Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.</abstract><doi>10.1093/lifemeta/loae018</doi><orcidid>https://orcid.org/0000-0001-7049-1560</orcidid><orcidid>https://orcid.org/0000-0003-0844-8726</orcidid><orcidid>https://orcid.org/0000-0002-3199-287X</orcidid><orcidid>https://orcid.org/0000-0002-4622-3731</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2755-0230
ispartof Life metabolism, 2024-10, Vol.3 (5)
issn 2755-0230
2755-0230
language eng
recordid cdi_crossref_primary_10_1093_lifemeta_loae018
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection
title Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatty%20acid%20oxidation-induced%20HIF-1%CE%B1%20activation%20facilitates%20hepatic%20urate%20synthesis%20through%20upregulating%20NT5C2%20and%20XDH&rft.jtitle=Life%20metabolism&rft.au=Liang,%20Ningning&rft.date=2024-10-01&rft.volume=3&rft.issue=5&rft.issn=2755-0230&rft.eissn=2755-0230&rft_id=info:doi/10.1093/lifemeta/loae018&rft_dat=%3Ccrossref%3E10_1093_lifemeta_loae018%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true