The LncNAT11 –MYB11 – F3'H/FLS module mediates flavonol biosynthesis to regulate salt stress tolerance in Ginkgo biloba

Flavonols are important secondary metabolites that enable plants to resist environmental stresses. Although MYB regulation of flavonol biosynthesis has been well studied, the long non-coding RNA (lncRNA)–MYB networks involved in regulating flavonol biosynthesis remain unknown. Ginkgo biloba is rich...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2024-12
Hauptverfasser: Liu, Sian, Zhang, Hanyue, Meng, Zhaolong, Jia, Zhichao, Fu, Fangfang, Jin, Biao, Cao, Fuliang, Wang, Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of experimental botany
container_volume
creator Liu, Sian
Zhang, Hanyue
Meng, Zhaolong
Jia, Zhichao
Fu, Fangfang
Jin, Biao
Cao, Fuliang
Wang, Li
description Flavonols are important secondary metabolites that enable plants to resist environmental stresses. Although MYB regulation of flavonol biosynthesis has been well studied, the long non-coding RNA (lncRNA)–MYB networks involved in regulating flavonol biosynthesis remain unknown. Ginkgo biloba is rich in flavonols, which are the most important medicinal components. Based on multi-omics data and phylogenetic trees, we identified GbMYB11 as a potential key transcription factor regulating flavonol biosynthesis. Overexpression and virus-induced gene silencing (VIGS) experiments confirmed that GbMYB11 acts as a pivotal positive regulator in flavonol biosynthesis. In the transcriptome of calli overexpressing GbMYB11, we identified significant up-regulation of GbF3'H and GbFLS in the flavonol biosynthetic pathway. Yeast one-hybrid and dual-luciferase assays demonstrated that GbMYB11 enhances the expression of GbF3'H and GbFLS by binding to their promoters. Interestingly, we identified LncNAT11, an antisense lncRNA complement to GbMYB11, which negatively regulates flavonol biosynthesis by repressing the expression of GbMYB11. Consequently, we established the LncNAT11–GbMYB11–GbF3'H/GbFLS module as a critical regulator of flavonol biosynthesis in G. biloba, and further elucidated that this module can mitigate the accumulation of reactive oxygen species by modulating flavonol biosynthesis during salt stress. These findings unveil a novel mechanism underlying flavonol biosynthesis and an lncRNA–MYB-mediated salt stress tolerance strategy in plants.
doi_str_mv 10.1093/jxb/erae438
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jxb_erae438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_jxb_erae438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c121t-d7cb6e58007a87f7d351b6183f7ee1d3022035b8511bc2f7c4e07d9a665478bb3</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEqWw4gLesUCh4ziO02WpaIsUYEFZsIpsZ9KmuDGy04qKDXfghpyEVO1qRqP_R_8_Qq4Z3DEY8sHqSw_QK0x4dkJ6LEkhihPOTkkPII4jGAp5Ti5CWAGAACF65Hu-RJo35nk0Z4z-_fw-vd8fFjrhN7PBJH-la1duLNI1lrVqMdDKqq1rnKW6dmHXtEsMdaCtox4XG9tJaFC2paH1GPZ320VqDNK6odO6-Vi4zmidVpfkrFI24NVx9snb5GE-nkX5y_RxPMojw2LWRqU0OkWRAUiVyUqWXDCdsoxXEpGVvGsGXOhMMKZNXEmTIMhyqNJUJDLTmvfJ7eGv8S4Ej1Xx6eu18ruCQbHnVnTciiM3_g9NaGNq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The LncNAT11 –MYB11 – F3'H/FLS module mediates flavonol biosynthesis to regulate salt stress tolerance in Ginkgo biloba</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Liu, Sian ; Zhang, Hanyue ; Meng, Zhaolong ; Jia, Zhichao ; Fu, Fangfang ; Jin, Biao ; Cao, Fuliang ; Wang, Li</creator><contributor>Sunkar, Ramanjulu</contributor><creatorcontrib>Liu, Sian ; Zhang, Hanyue ; Meng, Zhaolong ; Jia, Zhichao ; Fu, Fangfang ; Jin, Biao ; Cao, Fuliang ; Wang, Li ; Sunkar, Ramanjulu</creatorcontrib><description>Flavonols are important secondary metabolites that enable plants to resist environmental stresses. Although MYB regulation of flavonol biosynthesis has been well studied, the long non-coding RNA (lncRNA)–MYB networks involved in regulating flavonol biosynthesis remain unknown. Ginkgo biloba is rich in flavonols, which are the most important medicinal components. Based on multi-omics data and phylogenetic trees, we identified GbMYB11 as a potential key transcription factor regulating flavonol biosynthesis. Overexpression and virus-induced gene silencing (VIGS) experiments confirmed that GbMYB11 acts as a pivotal positive regulator in flavonol biosynthesis. In the transcriptome of calli overexpressing GbMYB11, we identified significant up-regulation of GbF3'H and GbFLS in the flavonol biosynthetic pathway. Yeast one-hybrid and dual-luciferase assays demonstrated that GbMYB11 enhances the expression of GbF3'H and GbFLS by binding to their promoters. Interestingly, we identified LncNAT11, an antisense lncRNA complement to GbMYB11, which negatively regulates flavonol biosynthesis by repressing the expression of GbMYB11. Consequently, we established the LncNAT11–GbMYB11–GbF3'H/GbFLS module as a critical regulator of flavonol biosynthesis in G. biloba, and further elucidated that this module can mitigate the accumulation of reactive oxygen species by modulating flavonol biosynthesis during salt stress. These findings unveil a novel mechanism underlying flavonol biosynthesis and an lncRNA–MYB-mediated salt stress tolerance strategy in plants.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erae438</identifier><language>eng</language><ispartof>Journal of experimental botany, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c121t-d7cb6e58007a87f7d351b6183f7ee1d3022035b8511bc2f7c4e07d9a665478bb3</cites><orcidid>0000-0002-7330-334X ; 0000-0003-1688-064X ; 0000-0001-7042-3808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><contributor>Sunkar, Ramanjulu</contributor><creatorcontrib>Liu, Sian</creatorcontrib><creatorcontrib>Zhang, Hanyue</creatorcontrib><creatorcontrib>Meng, Zhaolong</creatorcontrib><creatorcontrib>Jia, Zhichao</creatorcontrib><creatorcontrib>Fu, Fangfang</creatorcontrib><creatorcontrib>Jin, Biao</creatorcontrib><creatorcontrib>Cao, Fuliang</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><title>The LncNAT11 –MYB11 – F3'H/FLS module mediates flavonol biosynthesis to regulate salt stress tolerance in Ginkgo biloba</title><title>Journal of experimental botany</title><description>Flavonols are important secondary metabolites that enable plants to resist environmental stresses. Although MYB regulation of flavonol biosynthesis has been well studied, the long non-coding RNA (lncRNA)–MYB networks involved in regulating flavonol biosynthesis remain unknown. Ginkgo biloba is rich in flavonols, which are the most important medicinal components. Based on multi-omics data and phylogenetic trees, we identified GbMYB11 as a potential key transcription factor regulating flavonol biosynthesis. Overexpression and virus-induced gene silencing (VIGS) experiments confirmed that GbMYB11 acts as a pivotal positive regulator in flavonol biosynthesis. In the transcriptome of calli overexpressing GbMYB11, we identified significant up-regulation of GbF3'H and GbFLS in the flavonol biosynthetic pathway. Yeast one-hybrid and dual-luciferase assays demonstrated that GbMYB11 enhances the expression of GbF3'H and GbFLS by binding to their promoters. Interestingly, we identified LncNAT11, an antisense lncRNA complement to GbMYB11, which negatively regulates flavonol biosynthesis by repressing the expression of GbMYB11. Consequently, we established the LncNAT11–GbMYB11–GbF3'H/GbFLS module as a critical regulator of flavonol biosynthesis in G. biloba, and further elucidated that this module can mitigate the accumulation of reactive oxygen species by modulating flavonol biosynthesis during salt stress. These findings unveil a novel mechanism underlying flavonol biosynthesis and an lncRNA–MYB-mediated salt stress tolerance strategy in plants.</description><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAQRS0EEqWw4gLesUCh4ziO02WpaIsUYEFZsIpsZ9KmuDGy04qKDXfghpyEVO1qRqP_R_8_Qq4Z3DEY8sHqSw_QK0x4dkJ6LEkhihPOTkkPII4jGAp5Ti5CWAGAACF65Hu-RJo35nk0Z4z-_fw-vd8fFjrhN7PBJH-la1duLNI1lrVqMdDKqq1rnKW6dmHXtEsMdaCtox4XG9tJaFC2paH1GPZ320VqDNK6odO6-Vi4zmidVpfkrFI24NVx9snb5GE-nkX5y_RxPMojw2LWRqU0OkWRAUiVyUqWXDCdsoxXEpGVvGsGXOhMMKZNXEmTIMhyqNJUJDLTmvfJ7eGv8S4Ej1Xx6eu18ruCQbHnVnTciiM3_g9NaGNq</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Liu, Sian</creator><creator>Zhang, Hanyue</creator><creator>Meng, Zhaolong</creator><creator>Jia, Zhichao</creator><creator>Fu, Fangfang</creator><creator>Jin, Biao</creator><creator>Cao, Fuliang</creator><creator>Wang, Li</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7330-334X</orcidid><orcidid>https://orcid.org/0000-0003-1688-064X</orcidid><orcidid>https://orcid.org/0000-0001-7042-3808</orcidid></search><sort><creationdate>20241223</creationdate><title>The LncNAT11 –MYB11 – F3'H/FLS module mediates flavonol biosynthesis to regulate salt stress tolerance in Ginkgo biloba</title><author>Liu, Sian ; Zhang, Hanyue ; Meng, Zhaolong ; Jia, Zhichao ; Fu, Fangfang ; Jin, Biao ; Cao, Fuliang ; Wang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c121t-d7cb6e58007a87f7d351b6183f7ee1d3022035b8511bc2f7c4e07d9a665478bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sian</creatorcontrib><creatorcontrib>Zhang, Hanyue</creatorcontrib><creatorcontrib>Meng, Zhaolong</creatorcontrib><creatorcontrib>Jia, Zhichao</creatorcontrib><creatorcontrib>Fu, Fangfang</creatorcontrib><creatorcontrib>Jin, Biao</creatorcontrib><creatorcontrib>Cao, Fuliang</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sian</au><au>Zhang, Hanyue</au><au>Meng, Zhaolong</au><au>Jia, Zhichao</au><au>Fu, Fangfang</au><au>Jin, Biao</au><au>Cao, Fuliang</au><au>Wang, Li</au><au>Sunkar, Ramanjulu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The LncNAT11 –MYB11 – F3'H/FLS module mediates flavonol biosynthesis to regulate salt stress tolerance in Ginkgo biloba</atitle><jtitle>Journal of experimental botany</jtitle><date>2024-12-23</date><risdate>2024</risdate><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>Flavonols are important secondary metabolites that enable plants to resist environmental stresses. Although MYB regulation of flavonol biosynthesis has been well studied, the long non-coding RNA (lncRNA)–MYB networks involved in regulating flavonol biosynthesis remain unknown. Ginkgo biloba is rich in flavonols, which are the most important medicinal components. Based on multi-omics data and phylogenetic trees, we identified GbMYB11 as a potential key transcription factor regulating flavonol biosynthesis. Overexpression and virus-induced gene silencing (VIGS) experiments confirmed that GbMYB11 acts as a pivotal positive regulator in flavonol biosynthesis. In the transcriptome of calli overexpressing GbMYB11, we identified significant up-regulation of GbF3'H and GbFLS in the flavonol biosynthetic pathway. Yeast one-hybrid and dual-luciferase assays demonstrated that GbMYB11 enhances the expression of GbF3'H and GbFLS by binding to their promoters. Interestingly, we identified LncNAT11, an antisense lncRNA complement to GbMYB11, which negatively regulates flavonol biosynthesis by repressing the expression of GbMYB11. Consequently, we established the LncNAT11–GbMYB11–GbF3'H/GbFLS module as a critical regulator of flavonol biosynthesis in G. biloba, and further elucidated that this module can mitigate the accumulation of reactive oxygen species by modulating flavonol biosynthesis during salt stress. These findings unveil a novel mechanism underlying flavonol biosynthesis and an lncRNA–MYB-mediated salt stress tolerance strategy in plants.</abstract><doi>10.1093/jxb/erae438</doi><orcidid>https://orcid.org/0000-0002-7330-334X</orcidid><orcidid>https://orcid.org/0000-0003-1688-064X</orcidid><orcidid>https://orcid.org/0000-0001-7042-3808</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2024-12
issn 0022-0957
1460-2431
language eng
recordid cdi_crossref_primary_10_1093_jxb_erae438
source Oxford University Press Journals All Titles (1996-Current)
title The LncNAT11 –MYB11 – F3'H/FLS module mediates flavonol biosynthesis to regulate salt stress tolerance in Ginkgo biloba
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20LncNAT11%20%E2%80%93MYB11%20%E2%80%93%20F3'H/FLS%20module%20mediates%20flavonol%20biosynthesis%20to%20regulate%20salt%20stress%20tolerance%20in%20Ginkgo%20biloba&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Liu,%20Sian&rft.date=2024-12-23&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/erae438&rft_dat=%3Ccrossref%3E10_1093_jxb_erae438%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true