Identifying optimally cost-effective dynamic treatment regimes with a Q-learning approach
Health policy decisions regarding patient treatment strategies require consideration of both treatment effectiveness and cost. We propose a two-step approach for identifying an optimally cost-effective and interpretable dynamic treatment regime. First, we develop a combined Q-learning and policy-sea...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society Series C: Applied Statistics 2023-05, Vol.72 (2), p.434-449 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449 |
---|---|
container_issue | 2 |
container_start_page | 434 |
container_title | Journal of the Royal Statistical Society Series C: Applied Statistics |
container_volume | 72 |
creator | Illenberger, Nicholas Spieker, Andrew J Mitra, Nandita |
description | Health policy decisions regarding patient treatment strategies require consideration of both treatment effectiveness and cost. We propose a two-step approach for identifying an optimally cost-effective and interpretable dynamic treatment regime. First, we develop a combined Q-learning and policy-search approach to estimate optimal list-based regimes under a constraint on expected treatment costs. Second, we propose an iterative procedure to select an optimally cost-effective regime from a set of candidate regimes corresponding to different cost constraints. Our approach can estimate optimal regimes in the presence of time-varying confounding, censoring, and correlated outcomes. Through simulation studies, we examine the operating characteristics of our approach under flexible modelling approaches. We also apply our methodology to identify optimally cost-effective treatment strategies for assigning adjuvant therapies to endometrial cancer patients. |
doi_str_mv | 10.1093/jrsssc/qlad016 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jrsssc_qlad016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_jrsssc_qlad016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-3259ac04154cded32cc78c5ac6098df5ba1ae7af970d379a80d8c80e85a9bb603</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKtb13mBaZPJZJIspfhTKIigC1fD1y9JmzJ_JkGZt7elvZu7ugfuIeSRswVnRiwPMaWEy58WLOP1FZnxqlaF0aq-JjPGhCxMKatbcpfSgR3DWTUj32vr-hz8FPodHcYcOmjbieKQcuG8d5jDr6N26qELSHN0kLvjgEa3C51L9C_kPQX6UbQOYn-CwDjGAXB_T248tMk9XHpOvl6eP1dvxeb9db162hRYKpMLUUoDyCouK7TOihJRaZSANTPaerkFDk6BN4pZoQxoZjVq5rQEs93WTMzJ4szFOKQUnW_GeHwRp4az5iSmOYtpLmLEP3cxW_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identifying optimally cost-effective dynamic treatment regimes with a Q-learning approach</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Business Source Complete</source><creator>Illenberger, Nicholas ; Spieker, Andrew J ; Mitra, Nandita</creator><creatorcontrib>Illenberger, Nicholas ; Spieker, Andrew J ; Mitra, Nandita</creatorcontrib><description>Health policy decisions regarding patient treatment strategies require consideration of both treatment effectiveness and cost. We propose a two-step approach for identifying an optimally cost-effective and interpretable dynamic treatment regime. First, we develop a combined Q-learning and policy-search approach to estimate optimal list-based regimes under a constraint on expected treatment costs. Second, we propose an iterative procedure to select an optimally cost-effective regime from a set of candidate regimes corresponding to different cost constraints. Our approach can estimate optimal regimes in the presence of time-varying confounding, censoring, and correlated outcomes. Through simulation studies, we examine the operating characteristics of our approach under flexible modelling approaches. We also apply our methodology to identify optimally cost-effective treatment strategies for assigning adjuvant therapies to endometrial cancer patients.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1093/jrsssc/qlad016</identifier><language>eng</language><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2023-05, Vol.72 (2), p.434-449</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-3259ac04154cded32cc78c5ac6098df5ba1ae7af970d379a80d8c80e85a9bb603</citedby><cites>FETCH-LOGICAL-c279t-3259ac04154cded32cc78c5ac6098df5ba1ae7af970d379a80d8c80e85a9bb603</cites><orcidid>0000-0002-7714-3910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Illenberger, Nicholas</creatorcontrib><creatorcontrib>Spieker, Andrew J</creatorcontrib><creatorcontrib>Mitra, Nandita</creatorcontrib><title>Identifying optimally cost-effective dynamic treatment regimes with a Q-learning approach</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><description>Health policy decisions regarding patient treatment strategies require consideration of both treatment effectiveness and cost. We propose a two-step approach for identifying an optimally cost-effective and interpretable dynamic treatment regime. First, we develop a combined Q-learning and policy-search approach to estimate optimal list-based regimes under a constraint on expected treatment costs. Second, we propose an iterative procedure to select an optimally cost-effective regime from a set of candidate regimes corresponding to different cost constraints. Our approach can estimate optimal regimes in the presence of time-varying confounding, censoring, and correlated outcomes. Through simulation studies, we examine the operating characteristics of our approach under flexible modelling approaches. We also apply our methodology to identify optimally cost-effective treatment strategies for assigning adjuvant therapies to endometrial cancer patients.</description><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoWKtb13mBaZPJZJIspfhTKIigC1fD1y9JmzJ_JkGZt7elvZu7ugfuIeSRswVnRiwPMaWEy58WLOP1FZnxqlaF0aq-JjPGhCxMKatbcpfSgR3DWTUj32vr-hz8FPodHcYcOmjbieKQcuG8d5jDr6N26qELSHN0kLvjgEa3C51L9C_kPQX6UbQOYn-CwDjGAXB_T248tMk9XHpOvl6eP1dvxeb9db162hRYKpMLUUoDyCouK7TOihJRaZSANTPaerkFDk6BN4pZoQxoZjVq5rQEs93WTMzJ4szFOKQUnW_GeHwRp4az5iSmOYtpLmLEP3cxW_I</recordid><startdate>20230512</startdate><enddate>20230512</enddate><creator>Illenberger, Nicholas</creator><creator>Spieker, Andrew J</creator><creator>Mitra, Nandita</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7714-3910</orcidid></search><sort><creationdate>20230512</creationdate><title>Identifying optimally cost-effective dynamic treatment regimes with a Q-learning approach</title><author>Illenberger, Nicholas ; Spieker, Andrew J ; Mitra, Nandita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-3259ac04154cded32cc78c5ac6098df5ba1ae7af970d379a80d8c80e85a9bb603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Illenberger, Nicholas</creatorcontrib><creatorcontrib>Spieker, Andrew J</creatorcontrib><creatorcontrib>Mitra, Nandita</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Illenberger, Nicholas</au><au>Spieker, Andrew J</au><au>Mitra, Nandita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying optimally cost-effective dynamic treatment regimes with a Q-learning approach</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><date>2023-05-12</date><risdate>2023</risdate><volume>72</volume><issue>2</issue><spage>434</spage><epage>449</epage><pages>434-449</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>Health policy decisions regarding patient treatment strategies require consideration of both treatment effectiveness and cost. We propose a two-step approach for identifying an optimally cost-effective and interpretable dynamic treatment regime. First, we develop a combined Q-learning and policy-search approach to estimate optimal list-based regimes under a constraint on expected treatment costs. Second, we propose an iterative procedure to select an optimally cost-effective regime from a set of candidate regimes corresponding to different cost constraints. Our approach can estimate optimal regimes in the presence of time-varying confounding, censoring, and correlated outcomes. Through simulation studies, we examine the operating characteristics of our approach under flexible modelling approaches. We also apply our methodology to identify optimally cost-effective treatment strategies for assigning adjuvant therapies to endometrial cancer patients.</abstract><doi>10.1093/jrsssc/qlad016</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7714-3910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9254 |
ispartof | Journal of the Royal Statistical Society Series C: Applied Statistics, 2023-05, Vol.72 (2), p.434-449 |
issn | 0035-9254 1467-9876 |
language | eng |
recordid | cdi_crossref_primary_10_1093_jrsssc_qlad016 |
source | Oxford University Press Journals All Titles (1996-Current); Business Source Complete |
title | Identifying optimally cost-effective dynamic treatment regimes with a Q-learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20optimally%20cost-effective%20dynamic%20treatment%20regimes%20with%20a%20Q-learning%20approach&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Illenberger,%20Nicholas&rft.date=2023-05-12&rft.volume=72&rft.issue=2&rft.spage=434&rft.epage=449&rft.pages=434-449&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1093/jrsssc/qlad016&rft_dat=%3Ccrossref%3E10_1093_jrsssc_qlad016%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |