Conservation status of American pikas (Ochotona princeps)

The American pika (Ochotona princeps) is commonly perceived as a species that is at high risk of extinction due to climate change. The purpose of this review is two-fold: to evaluate the claim that climate change is threatening pikas with extinction, and to summarize the conservation status of the A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mammalogy 2020-12, Vol.101 (6), p.1466-1488
1. Verfasser: Smith, Andrew T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The American pika (Ochotona princeps) is commonly perceived as a species that is at high risk of extinction due to climate change. The purpose of this review is two-fold: to evaluate the claim that climate change is threatening pikas with extinction, and to summarize the conservation status of the American pika. Most American pikas inhabit major cordilleras, such as the Rocky Mountain, Sierra Nevada, and Cascade ranges. Occupancy of potential pika habitat in these ranges is uniformly high and no discernible climate signal has been found that discriminates between the many occupied and relatively few unoccupied sites that have been recently surveyed. Pikas therefore are thriving across most of their range. The story differs in more marginal parts of the species range, primarily across the Great Basin, where a higher percentage of available habitat is unoccupied. A comprehensive review of Great Basin pikas revealed that occupied sites, sites of recent extirpation, and old sites, were regularly found within the same geographic and climatic space as extant sites, and suggested that pikas in the Great Basin tolerated a broader set of habitat and climatic conditions than previously understood. Studies of a small subset of extirpated sites in the Great Basin and in California found that climate variables (most notably measures of hot temperature) were associated more often with extirpated sites than occupied sites. Importantly, upward contraction of the lower elevation boundary also was found at some sites. However, models that incorporated variables other than climate (such as availability of upslope talus habitat) often were better predictors of site persistence. Many extirpations occurred on small habitat patches, which were subject to stochastic extinction, as informed by a long-term pika metapopulation study in Bodie, California. In addition, several sites may have been compromised by cattle grazing or other anthropogenic factors. In contrast, several low, hot sites (Bodie, Mono Craters, Craters of the Moon National Monument and Preserve, Lava Beds National Monument, Columbia River Gorge) retain active pika populations, demonstrating the adaptive capacity and resilience of pikas in response to adverse environmental conditions. Pikas cope with warm temperatures by retreating into cool interstices of their talus habitat and augment their restricted daytime foraging with nocturnal activity. Pikas exhibit significant flexibility in their foraging tactics and are
ISSN:0022-2372
1545-1542
DOI:10.1093/jmammal/gyaa110