Robo-advising: learning investors' risk preferences via portfolio choices

We introduce a reinforcement learning framework for retail robo-advising. The robo-advisor does not know the investor’s risk preference but learns it over time by observing her portfolio choices in different market environments. We develop an exploration–exploitation algorithm that trades off costly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of financial econometrics 2021, Vol.19 (2), p.369-392
1. Verfasser: Alsabah, Humoud
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue 2
container_start_page 369
container_title Journal of financial econometrics
container_volume 19
creator Alsabah, Humoud
description We introduce a reinforcement learning framework for retail robo-advising. The robo-advisor does not know the investor’s risk preference but learns it over time by observing her portfolio choices in different market environments. We develop an exploration–exploitation algorithm that trades off costly solicitations of portfolio choices by the investor with autonomous trading decisions based on stale estimates of investor’s risk aversion. We show that the approximate value function constructed by the algorithm converges to the value function of an omniscient robo-advisor over a number of periods that is polynomial in the state and action space. By correcting for the investor’s mistakes, the robo-advisor may outperform a stand-alone investor, regardless of the investor’s opportunity cost for making portfolio decisions.
doi_str_mv 10.1093/jjfinec/nbz040
format Article
fullrecord <record><control><sourceid>econis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jjfinec_nbz040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>177093930X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c3f2e614cb6e95ea3ff2702f13b74e24c52ff934e28968e13158b67a7fefd8663</originalsourceid><addsrcrecordid>eNpFj81LAzEUxIMoWGuvnv0Htn0vyebjKMWPQkEQC72FJH1PdtFd2Yigf70rW_QyM4eZgZ8QVwhLBK9WbctNR3nVpW_QcCJmqK2vnEZ7-pfBn4uLUloAaaTGmVg89amv4uGzKU33cinOOL4WWhx9LnZ3t8_rh2r7eL9Z32yrrIz_GJUlGdQ5GfI1RcUsLUhGlawmqXMtmb0ao_PGESqsXTI2WiY-OGPUXCyn3zz0pQzE4X1o3uLwFRDCL0w4woQJZhxcTwPKfdeU_7q1Y9sr2KsfNkBInw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robo-advising: learning investors' risk preferences via portfolio choices</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Alsabah, Humoud</creator><creatorcontrib>Alsabah, Humoud</creatorcontrib><description>We introduce a reinforcement learning framework for retail robo-advising. The robo-advisor does not know the investor’s risk preference but learns it over time by observing her portfolio choices in different market environments. We develop an exploration–exploitation algorithm that trades off costly solicitations of portfolio choices by the investor with autonomous trading decisions based on stale estimates of investor’s risk aversion. We show that the approximate value function constructed by the algorithm converges to the value function of an omniscient robo-advisor over a number of periods that is polynomial in the state and action space. By correcting for the investor’s mistakes, the robo-advisor may outperform a stand-alone investor, regardless of the investor’s opportunity cost for making portfolio decisions.</description><identifier>ISSN: 1479-8409</identifier><identifier>EISSN: 1479-8417</identifier><identifier>DOI: 10.1093/jjfinec/nbz040</identifier><language>eng</language><ispartof>Journal of financial econometrics, 2021, Vol.19 (2), p.369-392</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c3f2e614cb6e95ea3ff2702f13b74e24c52ff934e28968e13158b67a7fefd8663</citedby><cites>FETCH-LOGICAL-c369t-c3f2e614cb6e95ea3ff2702f13b74e24c52ff934e28968e13158b67a7fefd8663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Alsabah, Humoud</creatorcontrib><title>Robo-advising: learning investors' risk preferences via portfolio choices</title><title>Journal of financial econometrics</title><description>We introduce a reinforcement learning framework for retail robo-advising. The robo-advisor does not know the investor’s risk preference but learns it over time by observing her portfolio choices in different market environments. We develop an exploration–exploitation algorithm that trades off costly solicitations of portfolio choices by the investor with autonomous trading decisions based on stale estimates of investor’s risk aversion. We show that the approximate value function constructed by the algorithm converges to the value function of an omniscient robo-advisor over a number of periods that is polynomial in the state and action space. By correcting for the investor’s mistakes, the robo-advisor may outperform a stand-alone investor, regardless of the investor’s opportunity cost for making portfolio decisions.</description><issn>1479-8409</issn><issn>1479-8417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFj81LAzEUxIMoWGuvnv0Htn0vyebjKMWPQkEQC72FJH1PdtFd2Yigf70rW_QyM4eZgZ8QVwhLBK9WbctNR3nVpW_QcCJmqK2vnEZ7-pfBn4uLUloAaaTGmVg89amv4uGzKU33cinOOL4WWhx9LnZ3t8_rh2r7eL9Z32yrrIz_GJUlGdQ5GfI1RcUsLUhGlawmqXMtmb0ao_PGESqsXTI2WiY-OGPUXCyn3zz0pQzE4X1o3uLwFRDCL0w4woQJZhxcTwPKfdeU_7q1Y9sr2KsfNkBInw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Alsabah, Humoud</creator><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Robo-advising</title><author>Alsabah, Humoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c3f2e614cb6e95ea3ff2702f13b74e24c52ff934e28968e13158b67a7fefd8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsabah, Humoud</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of financial econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsabah, Humoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robo-advising: learning investors' risk preferences via portfolio choices</atitle><jtitle>Journal of financial econometrics</jtitle><date>2021</date><risdate>2021</risdate><volume>19</volume><issue>2</issue><spage>369</spage><epage>392</epage><pages>369-392</pages><issn>1479-8409</issn><eissn>1479-8417</eissn><abstract>We introduce a reinforcement learning framework for retail robo-advising. The robo-advisor does not know the investor’s risk preference but learns it over time by observing her portfolio choices in different market environments. We develop an exploration–exploitation algorithm that trades off costly solicitations of portfolio choices by the investor with autonomous trading decisions based on stale estimates of investor’s risk aversion. We show that the approximate value function constructed by the algorithm converges to the value function of an omniscient robo-advisor over a number of periods that is polynomial in the state and action space. By correcting for the investor’s mistakes, the robo-advisor may outperform a stand-alone investor, regardless of the investor’s opportunity cost for making portfolio decisions.</abstract><doi>10.1093/jjfinec/nbz040</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1479-8409
ispartof Journal of financial econometrics, 2021, Vol.19 (2), p.369-392
issn 1479-8409
1479-8417
language eng
recordid cdi_crossref_primary_10_1093_jjfinec_nbz040
source Oxford University Press Journals All Titles (1996-Current)
title Robo-advising: learning investors' risk preferences via portfolio choices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-econis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robo-advising:%20learning%20investors'%20risk%20preferences%20via%20portfolio%20choices&rft.jtitle=Journal%20of%20financial%20econometrics&rft.au=Alsabah,%20Humoud&rft.date=2021&rft.volume=19&rft.issue=2&rft.spage=369&rft.epage=392&rft.pages=369-392&rft.issn=1479-8409&rft.eissn=1479-8417&rft_id=info:doi/10.1093/jjfinec/nbz040&rft_dat=%3Ceconis_cross%3E177093930X%3C/econis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true