Probabilistic logic of quantum observations
Abstract A probabilistic propositional logic, endowed with a constructor for asserting compatibility of diagonalisable and bounded observables, is presented and illustrated for reasoning about the random results of projective measurements made on a given quantum state. Simultaneous measurements are...
Gespeichert in:
Veröffentlicht in: | Logic journal of the IGPL 2019-05, Vol.27 (3), p.328-370 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 3 |
container_start_page | 328 |
container_title | Logic journal of the IGPL |
container_volume | 27 |
creator | Sernadas, A Rasga, J Sernadas, C Alcácer, L Henriques, A B |
description | Abstract
A probabilistic propositional logic, endowed with a constructor for asserting compatibility of diagonalisable and bounded observables, is presented and illustrated for reasoning about the random results of projective measurements made on a given quantum state. Simultaneous measurements are assumed to imply that the underlying observables are compatible. A sound and weakly complete axiomatisation is provided relying on the decidable first-order theory of real closed ordered fields. The proposed logic is proved to be a conservative extension of classical propositional logic. |
doi_str_mv | 10.1093/jigpal/jzy051 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jigpal_jzy051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jigpal/jzy051</oup_id><sourcerecordid>10.1093/jigpal/jzy051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-31bd7f5c1a79837904e4c5971e81be6005f8393550672ae8297dcc6ee7ea9f0b3</originalsourceid><addsrcrecordid>eNqFj7FLAzEchYMoWKuj-42CxP6SXC7JKEWrUNBB55CkSclxbc7kTqh_vdVzd3nvDR8PPoSuCdwRUGzRxm1vukX7dQBOTtCMsEZiJVV9-rsFBsHJOboopQWAWlI-Q7evOVljYxfLEF3Vpe0xU6g-RrMfxl2VbPH50wwx7cslOgumK_7qr-fo_fHhbfmE1y-r5-X9GjtKmwEzYjcicEeMUJIJBbWvHVeCeEmsbwB4kEwxzqER1HhJldg413gvvFEBLJsjPP26nErJPug-x53JB01A_5jqyVRPpkf-ZuLT2P-DfgOBUVbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probabilistic logic of quantum observations</title><source>EBSCOhost Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Sernadas, A ; Rasga, J ; Sernadas, C ; Alcácer, L ; Henriques, A B</creator><creatorcontrib>Sernadas, A ; Rasga, J ; Sernadas, C ; Alcácer, L ; Henriques, A B</creatorcontrib><description>Abstract
A probabilistic propositional logic, endowed with a constructor for asserting compatibility of diagonalisable and bounded observables, is presented and illustrated for reasoning about the random results of projective measurements made on a given quantum state. Simultaneous measurements are assumed to imply that the underlying observables are compatible. A sound and weakly complete axiomatisation is provided relying on the decidable first-order theory of real closed ordered fields. The proposed logic is proved to be a conservative extension of classical propositional logic.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzy051</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Logic journal of the IGPL, 2019-05, Vol.27 (3), p.328-370</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-31bd7f5c1a79837904e4c5971e81be6005f8393550672ae8297dcc6ee7ea9f0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Sernadas, A</creatorcontrib><creatorcontrib>Rasga, J</creatorcontrib><creatorcontrib>Sernadas, C</creatorcontrib><creatorcontrib>Alcácer, L</creatorcontrib><creatorcontrib>Henriques, A B</creatorcontrib><title>Probabilistic logic of quantum observations</title><title>Logic journal of the IGPL</title><description>Abstract
A probabilistic propositional logic, endowed with a constructor for asserting compatibility of diagonalisable and bounded observables, is presented and illustrated for reasoning about the random results of projective measurements made on a given quantum state. Simultaneous measurements are assumed to imply that the underlying observables are compatible. A sound and weakly complete axiomatisation is provided relying on the decidable first-order theory of real closed ordered fields. The proposed logic is proved to be a conservative extension of classical propositional logic.</description><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFj7FLAzEchYMoWKuj-42CxP6SXC7JKEWrUNBB55CkSclxbc7kTqh_vdVzd3nvDR8PPoSuCdwRUGzRxm1vukX7dQBOTtCMsEZiJVV9-rsFBsHJOboopQWAWlI-Q7evOVljYxfLEF3Vpe0xU6g-RrMfxl2VbPH50wwx7cslOgumK_7qr-fo_fHhbfmE1y-r5-X9GjtKmwEzYjcicEeMUJIJBbWvHVeCeEmsbwB4kEwxzqER1HhJldg413gvvFEBLJsjPP26nErJPug-x53JB01A_5jqyVRPpkf-ZuLT2P-DfgOBUVbY</recordid><startdate>20190524</startdate><enddate>20190524</enddate><creator>Sernadas, A</creator><creator>Rasga, J</creator><creator>Sernadas, C</creator><creator>Alcácer, L</creator><creator>Henriques, A B</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190524</creationdate><title>Probabilistic logic of quantum observations</title><author>Sernadas, A ; Rasga, J ; Sernadas, C ; Alcácer, L ; Henriques, A B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-31bd7f5c1a79837904e4c5971e81be6005f8393550672ae8297dcc6ee7ea9f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sernadas, A</creatorcontrib><creatorcontrib>Rasga, J</creatorcontrib><creatorcontrib>Sernadas, C</creatorcontrib><creatorcontrib>Alcácer, L</creatorcontrib><creatorcontrib>Henriques, A B</creatorcontrib><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sernadas, A</au><au>Rasga, J</au><au>Sernadas, C</au><au>Alcácer, L</au><au>Henriques, A B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic logic of quantum observations</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2019-05-24</date><risdate>2019</risdate><volume>27</volume><issue>3</issue><spage>328</spage><epage>370</epage><pages>328-370</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>Abstract
A probabilistic propositional logic, endowed with a constructor for asserting compatibility of diagonalisable and bounded observables, is presented and illustrated for reasoning about the random results of projective measurements made on a given quantum state. Simultaneous measurements are assumed to imply that the underlying observables are compatible. A sound and weakly complete axiomatisation is provided relying on the decidable first-order theory of real closed ordered fields. The proposed logic is proved to be a conservative extension of classical propositional logic.</abstract><pub>Oxford University Press</pub><doi>10.1093/jigpal/jzy051</doi><tpages>43</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-0751 |
ispartof | Logic journal of the IGPL, 2019-05, Vol.27 (3), p.328-370 |
issn | 1367-0751 1368-9894 |
language | eng |
recordid | cdi_crossref_primary_10_1093_jigpal_jzy051 |
source | EBSCOhost Business Source Complete; Oxford University Press Journals All Titles (1996-Current) |
title | Probabilistic logic of quantum observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20logic%20of%20quantum%20observations&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Sernadas,%20A&rft.date=2019-05-24&rft.volume=27&rft.issue=3&rft.spage=328&rft.epage=370&rft.pages=328-370&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzy051&rft_dat=%3Coup_cross%3E10.1093/jigpal/jzy051%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/jigpal/jzy051&rfr_iscdi=true |