Constructive theories through a modal lens
We present a uniform proof-theoretic proof of the Gödel–McKinsey–Tarski embedding for a class of first-order intuitionistic theories. This is achieved by adapting to the case of modal logic the methods of proof analysis in order to convert axioms into rules of inference of a suitable sequent calculu...
Gespeichert in:
Veröffentlicht in: | Logic journal of the IGPL 2023-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a uniform proof-theoretic proof of the Gödel–McKinsey–Tarski embedding for a class of first-order intuitionistic theories. This is achieved by adapting to the case of modal logic the methods of proof analysis in order to convert axioms into rules of inference of a suitable sequent calculus. The soundness and the faithfulness of the embedding are proved by induction on the height of the derivations in the augmented calculi. Finally, we define an extension of the modal system for which the result holds with respect to geometric intuitionistic. |
---|---|
ISSN: | 1367-0751 1368-9894 |
DOI: | 10.1093/jigpal/jzad029 |