Hourly pollutants forecasting using a deep learning approach to obtain the AQI
Abstract The Air Quality Index (AQI) shows the state of air pollution in a unique and more understandable way. This work aims to forecast the AQI in Algeciras (Spain) 8 hours in advance. The AQI is calculated indirectly through the predicted concentrations of five pollutants (O3, NO2, CO, SO2 and PM...
Gespeichert in:
Veröffentlicht in: | Logic journal of the IGPL 2023-07, Vol.31 (4), p.722-738 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 738 |
---|---|
container_issue | 4 |
container_start_page | 722 |
container_title | Logic journal of the IGPL |
container_volume | 31 |
creator | Moscoso-López, José Antonio González-Enrique, Javier Urda, Daniel Ruiz-Aguilar, Juan Jesús Turias, Ignacio J |
description | Abstract
The Air Quality Index (AQI) shows the state of air pollution in a unique and more understandable way. This work aims to forecast the AQI in Algeciras (Spain) 8 hours in advance. The AQI is calculated indirectly through the predicted concentrations of five pollutants (O3, NO2, CO, SO2 and PM10) to achieve this goal. Artificial neural networks (ANNs), sequence-to-sequence long short-term memory networks (LSTMs) and a newly proposed method combing a rolling window with the latter (LSTMNA) are employed as the forecasting techniques. Besides, two input approaches are evaluated: using only the data from the own time series of the pollutant in the first case or adding exogenous variables in the second one. Several window sizes are employed (24, 28 and 72 hours) with ANNs and LSTMNAs. Additionally, several feature ranking methods are applied in the exogenous approach to select the most relevant lagged variables to feed the models. Results show how the proposed exogenous approach increases the performance of the prediction models. Besides, the newly proposed method LSTMNA provides the best performances in most of the cases evaluated. Hence, it constitutes an exciting alternative to standard LSTMs and ANNs to predict pollutants concentrations and, consequently, the AQI. |
doi_str_mv | 10.1093/jigpal/jzac035 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jigpal_jzac035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jigpal/jzac035</oup_id><sourcerecordid>10.1093/jigpal/jzac035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-f0d3112a7c767a2c8b9f590c4fb9332b65c415256658aa21390054a2fd51c5243</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMntlSOuPOInHqgJaqQIhwRxdHLtNZGLLdoby66FNd5a7e6X3ueFB6JGSBSWSL_tu78Eu-x9QhIsrNKO8qDJZyfz6fJcZKQW9RXcx9oSQvGJiht42bgz2iL2zdkwwpIiNC1pBTN2wx2M8TcCt1h5bDWE4Z--DA3XAyWHXJOgGnA4arz629-jGgI364bLn6Ovl-XO9yXbvr9v1apcpVvKUGdJyShmUqixKYKpqpBGSqNw0knPWFELlVDBRFKICYJRLQkQOzLSCKsFyPkeL6a8KLsagTe1D9w3hWFNSn2zUk436YuMPeJoAN_r_ur_eqGNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hourly pollutants forecasting using a deep learning approach to obtain the AQI</title><source>EBSCOhost Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Moscoso-López, José Antonio ; González-Enrique, Javier ; Urda, Daniel ; Ruiz-Aguilar, Juan Jesús ; Turias, Ignacio J</creator><creatorcontrib>Moscoso-López, José Antonio ; González-Enrique, Javier ; Urda, Daniel ; Ruiz-Aguilar, Juan Jesús ; Turias, Ignacio J</creatorcontrib><description>Abstract
The Air Quality Index (AQI) shows the state of air pollution in a unique and more understandable way. This work aims to forecast the AQI in Algeciras (Spain) 8 hours in advance. The AQI is calculated indirectly through the predicted concentrations of five pollutants (O3, NO2, CO, SO2 and PM10) to achieve this goal. Artificial neural networks (ANNs), sequence-to-sequence long short-term memory networks (LSTMs) and a newly proposed method combing a rolling window with the latter (LSTMNA) are employed as the forecasting techniques. Besides, two input approaches are evaluated: using only the data from the own time series of the pollutant in the first case or adding exogenous variables in the second one. Several window sizes are employed (24, 28 and 72 hours) with ANNs and LSTMNAs. Additionally, several feature ranking methods are applied in the exogenous approach to select the most relevant lagged variables to feed the models. Results show how the proposed exogenous approach increases the performance of the prediction models. Besides, the newly proposed method LSTMNA provides the best performances in most of the cases evaluated. Hence, it constitutes an exciting alternative to standard LSTMs and ANNs to predict pollutants concentrations and, consequently, the AQI.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzac035</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Logic journal of the IGPL, 2023-07, Vol.31 (4), p.722-738</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-f0d3112a7c767a2c8b9f590c4fb9332b65c415256658aa21390054a2fd51c5243</citedby><cites>FETCH-LOGICAL-c273t-f0d3112a7c767a2c8b9f590c4fb9332b65c415256658aa21390054a2fd51c5243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids></links><search><creatorcontrib>Moscoso-López, José Antonio</creatorcontrib><creatorcontrib>González-Enrique, Javier</creatorcontrib><creatorcontrib>Urda, Daniel</creatorcontrib><creatorcontrib>Ruiz-Aguilar, Juan Jesús</creatorcontrib><creatorcontrib>Turias, Ignacio J</creatorcontrib><title>Hourly pollutants forecasting using a deep learning approach to obtain the AQI</title><title>Logic journal of the IGPL</title><description>Abstract
The Air Quality Index (AQI) shows the state of air pollution in a unique and more understandable way. This work aims to forecast the AQI in Algeciras (Spain) 8 hours in advance. The AQI is calculated indirectly through the predicted concentrations of five pollutants (O3, NO2, CO, SO2 and PM10) to achieve this goal. Artificial neural networks (ANNs), sequence-to-sequence long short-term memory networks (LSTMs) and a newly proposed method combing a rolling window with the latter (LSTMNA) are employed as the forecasting techniques. Besides, two input approaches are evaluated: using only the data from the own time series of the pollutant in the first case or adding exogenous variables in the second one. Several window sizes are employed (24, 28 and 72 hours) with ANNs and LSTMNAs. Additionally, several feature ranking methods are applied in the exogenous approach to select the most relevant lagged variables to feed the models. Results show how the proposed exogenous approach increases the performance of the prediction models. Besides, the newly proposed method LSTMNA provides the best performances in most of the cases evaluated. Hence, it constitutes an exciting alternative to standard LSTMs and ANNs to predict pollutants concentrations and, consequently, the AQI.</description><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMntlSOuPOInHqgJaqQIhwRxdHLtNZGLLdoby66FNd5a7e6X3ueFB6JGSBSWSL_tu78Eu-x9QhIsrNKO8qDJZyfz6fJcZKQW9RXcx9oSQvGJiht42bgz2iL2zdkwwpIiNC1pBTN2wx2M8TcCt1h5bDWE4Z--DA3XAyWHXJOgGnA4arz629-jGgI364bLn6Ovl-XO9yXbvr9v1apcpVvKUGdJyShmUqixKYKpqpBGSqNw0knPWFELlVDBRFKICYJRLQkQOzLSCKsFyPkeL6a8KLsagTe1D9w3hWFNSn2zUk436YuMPeJoAN_r_ur_eqGNi</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Moscoso-López, José Antonio</creator><creator>González-Enrique, Javier</creator><creator>Urda, Daniel</creator><creator>Ruiz-Aguilar, Juan Jesús</creator><creator>Turias, Ignacio J</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230725</creationdate><title>Hourly pollutants forecasting using a deep learning approach to obtain the AQI</title><author>Moscoso-López, José Antonio ; González-Enrique, Javier ; Urda, Daniel ; Ruiz-Aguilar, Juan Jesús ; Turias, Ignacio J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-f0d3112a7c767a2c8b9f590c4fb9332b65c415256658aa21390054a2fd51c5243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moscoso-López, José Antonio</creatorcontrib><creatorcontrib>González-Enrique, Javier</creatorcontrib><creatorcontrib>Urda, Daniel</creatorcontrib><creatorcontrib>Ruiz-Aguilar, Juan Jesús</creatorcontrib><creatorcontrib>Turias, Ignacio J</creatorcontrib><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moscoso-López, José Antonio</au><au>González-Enrique, Javier</au><au>Urda, Daniel</au><au>Ruiz-Aguilar, Juan Jesús</au><au>Turias, Ignacio J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hourly pollutants forecasting using a deep learning approach to obtain the AQI</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2023-07-25</date><risdate>2023</risdate><volume>31</volume><issue>4</issue><spage>722</spage><epage>738</epage><pages>722-738</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>Abstract
The Air Quality Index (AQI) shows the state of air pollution in a unique and more understandable way. This work aims to forecast the AQI in Algeciras (Spain) 8 hours in advance. The AQI is calculated indirectly through the predicted concentrations of five pollutants (O3, NO2, CO, SO2 and PM10) to achieve this goal. Artificial neural networks (ANNs), sequence-to-sequence long short-term memory networks (LSTMs) and a newly proposed method combing a rolling window with the latter (LSTMNA) are employed as the forecasting techniques. Besides, two input approaches are evaluated: using only the data from the own time series of the pollutant in the first case or adding exogenous variables in the second one. Several window sizes are employed (24, 28 and 72 hours) with ANNs and LSTMNAs. Additionally, several feature ranking methods are applied in the exogenous approach to select the most relevant lagged variables to feed the models. Results show how the proposed exogenous approach increases the performance of the prediction models. Besides, the newly proposed method LSTMNA provides the best performances in most of the cases evaluated. Hence, it constitutes an exciting alternative to standard LSTMs and ANNs to predict pollutants concentrations and, consequently, the AQI.</abstract><pub>Oxford University Press</pub><doi>10.1093/jigpal/jzac035</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-0751 |
ispartof | Logic journal of the IGPL, 2023-07, Vol.31 (4), p.722-738 |
issn | 1367-0751 1368-9894 |
language | eng |
recordid | cdi_crossref_primary_10_1093_jigpal_jzac035 |
source | EBSCOhost Business Source Complete; Oxford University Press Journals All Titles (1996-Current) |
title | Hourly pollutants forecasting using a deep learning approach to obtain the AQI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hourly%20pollutants%20forecasting%20using%20a%20deep%20learning%20approach%20to%20obtain%20the%20AQI&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Moscoso-L%C3%B3pez,%20Jos%C3%A9%20Antonio&rft.date=2023-07-25&rft.volume=31&rft.issue=4&rft.spage=722&rft.epage=738&rft.pages=722-738&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzac035&rft_dat=%3Coup_cross%3E10.1093/jigpal/jzac035%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/jigpal/jzac035&rfr_iscdi=true |