Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images

Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logic journal of the IGPL 2022-07, Vol.30 (4), p.649-663
Hauptverfasser: Simić, Svetlana, Simić, Svetislav D, Banković, Zorana, Ivkov-Simić, Milana, Villar, José R, Simić, Dragan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 663
container_issue 4
container_start_page 649
container_title Logic journal of the IGPL
container_volume 30
creator Simić, Svetlana
Simić, Svetislav D
Banković, Zorana
Ivkov-Simić, Milana
Villar, José R
Simić, Dragan
description Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ survival. The most important issue is to differentiate between malignant skin tumours and benign lesions. The aim of this research is the classification of skin tumours by analysing medical skin tumour dermoscopy images. This paper is focused on a new strategy based on deep convolutional neural networks which have recently shown a state-of-the-art performance to define strategy to automatic classification for skin tumour images. The proposed system is tested on well-known HAM10000 data set. For experimental results, verification is performed and the results are compared with similar researches.
doi_str_mv 10.1093/jigpal/jzab009
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jigpal_jzab009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jigpal/jzab009</oup_id><sourcerecordid>10.1093/jigpal/jzab009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-5e7a6066cebf8366e390400faef597211cb270399fb7951ca124cb2d52f4ef763</originalsourceid><addsrcrecordid>eNqFkD1PwzAYhC0EEqWwMntlSPvaTux4rMJXpQoG2jlyjF05TeLITkDw6-nXznSn090ND0L3BGYEJJvXbturZl7_qgpAXqAJYTxPZC7Ty6MXCYiMXKObGGsASHOaTdDm0ZgeF7778s04ON-pBr-ZMRxl-PZhF7Hv8GIcfKsGp3HRqBiddVod2tj6gD92rsPrsfVjwMtWbU28RVdWNdHcnXWKNs9P6-I1Wb2_LIvFKtE0ZUOSGaE4cK5NZXPGuWESUgCrjM2koIToigpgUtpKyIxoRWi6jz4zalNjBWdTNDv96uBjDMaWfXCtCj8lgfIApTxBKc9Q9oOH08CP_X_dP4VPZw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images</title><source>Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Simić, Svetlana ; Simić, Svetislav D ; Banković, Zorana ; Ivkov-Simić, Milana ; Villar, José R ; Simić, Dragan</creator><creatorcontrib>Simić, Svetlana ; Simić, Svetislav D ; Banković, Zorana ; Ivkov-Simić, Milana ; Villar, José R ; Simić, Dragan</creatorcontrib><description>Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ survival. The most important issue is to differentiate between malignant skin tumours and benign lesions. The aim of this research is the classification of skin tumours by analysing medical skin tumour dermoscopy images. This paper is focused on a new strategy based on deep convolutional neural networks which have recently shown a state-of-the-art performance to define strategy to automatic classification for skin tumour images. The proposed system is tested on well-known HAM10000 data set. For experimental results, verification is performed and the results are compared with similar researches.</description><identifier>ISSN: 1367-0751</identifier><identifier>EISSN: 1368-9894</identifier><identifier>DOI: 10.1093/jigpal/jzab009</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Logic journal of the IGPL, 2022-07, Vol.30 (4), p.649-663</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-5e7a6066cebf8366e390400faef597211cb270399fb7951ca124cb2d52f4ef763</citedby><cites>FETCH-LOGICAL-c243t-5e7a6066cebf8366e390400faef597211cb270399fb7951ca124cb2d52f4ef763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Simić, Svetlana</creatorcontrib><creatorcontrib>Simić, Svetislav D</creatorcontrib><creatorcontrib>Banković, Zorana</creatorcontrib><creatorcontrib>Ivkov-Simić, Milana</creatorcontrib><creatorcontrib>Villar, José R</creatorcontrib><creatorcontrib>Simić, Dragan</creatorcontrib><title>Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images</title><title>Logic journal of the IGPL</title><description>Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ survival. The most important issue is to differentiate between malignant skin tumours and benign lesions. The aim of this research is the classification of skin tumours by analysing medical skin tumour dermoscopy images. This paper is focused on a new strategy based on deep convolutional neural networks which have recently shown a state-of-the-art performance to define strategy to automatic classification for skin tumour images. The proposed system is tested on well-known HAM10000 data set. For experimental results, verification is performed and the results are compared with similar researches.</description><issn>1367-0751</issn><issn>1368-9894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkD1PwzAYhC0EEqWwMntlSPvaTux4rMJXpQoG2jlyjF05TeLITkDw6-nXznSn090ND0L3BGYEJJvXbturZl7_qgpAXqAJYTxPZC7Ty6MXCYiMXKObGGsASHOaTdDm0ZgeF7778s04ON-pBr-ZMRxl-PZhF7Hv8GIcfKsGp3HRqBiddVod2tj6gD92rsPrsfVjwMtWbU28RVdWNdHcnXWKNs9P6-I1Wb2_LIvFKtE0ZUOSGaE4cK5NZXPGuWESUgCrjM2koIToigpgUtpKyIxoRWi6jz4zalNjBWdTNDv96uBjDMaWfXCtCj8lgfIApTxBKc9Q9oOH08CP_X_dP4VPZw8</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Simić, Svetlana</creator><creator>Simić, Svetislav D</creator><creator>Banković, Zorana</creator><creator>Ivkov-Simić, Milana</creator><creator>Villar, José R</creator><creator>Simić, Dragan</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220725</creationdate><title>Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images</title><author>Simić, Svetlana ; Simić, Svetislav D ; Banković, Zorana ; Ivkov-Simić, Milana ; Villar, José R ; Simić, Dragan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-5e7a6066cebf8366e390400faef597211cb270399fb7951ca124cb2d52f4ef763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simić, Svetlana</creatorcontrib><creatorcontrib>Simić, Svetislav D</creatorcontrib><creatorcontrib>Banković, Zorana</creatorcontrib><creatorcontrib>Ivkov-Simić, Milana</creatorcontrib><creatorcontrib>Villar, José R</creatorcontrib><creatorcontrib>Simić, Dragan</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Logic journal of the IGPL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simić, Svetlana</au><au>Simić, Svetislav D</au><au>Banković, Zorana</au><au>Ivkov-Simić, Milana</au><au>Villar, José R</au><au>Simić, Dragan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images</atitle><jtitle>Logic journal of the IGPL</jtitle><date>2022-07-25</date><risdate>2022</risdate><volume>30</volume><issue>4</issue><spage>649</spage><epage>663</epage><pages>649-663</pages><issn>1367-0751</issn><eissn>1368-9894</eissn><abstract>Abstract The skin, uniquely positioned at the interface between the human body and the external world, plays a multifaceted immunologic role in human life. In medical practice, early accurate detection of all types of skin tumours is essential to guide appropriate management and improve patients’ survival. The most important issue is to differentiate between malignant skin tumours and benign lesions. The aim of this research is the classification of skin tumours by analysing medical skin tumour dermoscopy images. This paper is focused on a new strategy based on deep convolutional neural networks which have recently shown a state-of-the-art performance to define strategy to automatic classification for skin tumour images. The proposed system is tested on well-known HAM10000 data set. For experimental results, verification is performed and the results are compared with similar researches.</abstract><pub>Oxford University Press</pub><doi>10.1093/jigpal/jzab009</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-0751
ispartof Logic journal of the IGPL, 2022-07, Vol.30 (4), p.649-663
issn 1367-0751
1368-9894
language eng
recordid cdi_crossref_primary_10_1093_jigpal_jzab009
source Business Source Complete; Oxford University Press Journals All Titles (1996-Current)
title Deep Convolutional Neural Networks on Automatic Classification for Skin Tumour Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Convolutional%20Neural%20Networks%20on%20Automatic%20Classification%20for%20Skin%20Tumour%20Images&rft.jtitle=Logic%20journal%20of%20the%20IGPL&rft.au=Simi%C4%87,%20Svetlana&rft.date=2022-07-25&rft.volume=30&rft.issue=4&rft.spage=649&rft.epage=663&rft.pages=649-663&rft.issn=1367-0751&rft.eissn=1368-9894&rft_id=info:doi/10.1093/jigpal/jzab009&rft_dat=%3Coup_cross%3E10.1093/jigpal/jzab009%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/jigpal/jzab009&rfr_iscdi=true