Acoustic logging array signal denoising using U-net and a case study in a TangGu oil field
This study developed a noise-reduction method for acoustic logging array signals using a deep neural network algorithm in the time-frequency domain. Initially, we derived analytical solutions for the received waveforms when the acoustic logging tool was positioned either at the centre or eccentrical...
Gespeichert in:
Veröffentlicht in: | Journal of geophysics and engineering 2024-04, Vol.21 (3), p.981-992 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study developed a noise-reduction method for acoustic logging array signals using a deep neural network algorithm in the time-frequency domain. Initially, we derived analytical solutions for the received waveforms when the acoustic logging tool was positioned either at the centre or eccentrically within the borehole. To simulate the received waveforms across various formations, we developed a real-axis integration algorithm. Subsequently, we devised a noise-reduction algorithm workflow based on a convolutional neural network and configured the structure and parameters of the U-net using TensorFlow. To address the scarcity of open datasets, we established both signal and noise datasets. The signal dataset was generated using theoretical simulation encompassing various model parameters, while the noise dataset was collected during tool testing and downhole operations. The trained model demonstrated substantial noise-reduction capabilities during validation. To validate the effectiveness of the algorithm, we applied noise reduction to actual data collected during downhole operations in a TangGu oil field, yielding impressive results across different types of noisy data. Therefore, the U-net-based time-domain noise-reduction algorithm proposed in this paper holds the potential to significantly improve the quality of acoustic logging array signals. |
---|---|
ISSN: | 1742-2132 1742-2140 |
DOI: | 10.1093/jge/gxae051 |