Excitation-time imaging condition reverse-time migration based on a physics-informed neural network traveltime calculation with wavefield decomposition using an optical flow vector

Abstract Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the infl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysics and engineering 2024-01, Vol.21 (1), p.200-220
Hauptverfasser: Li, Jian, Du, Guoning, Qin, Dewen, Yin, Wensun, Tan, Jun, Liu, Zhaolun, Song, Peng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 1
container_start_page 200
container_title Journal of geophysics and engineering
container_volume 21
creator Li, Jian
Du, Guoning
Qin, Dewen
Yin, Wensun
Tan, Jun
Liu, Zhaolun
Song, Peng
description Abstract Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the influence of low-wave-number noise. In this paper, we introduce the physics-informed neural network (PINN) algorithm to achieve a high-precision traveltime calculation of the source forward wavefield. Subsequently, we introduce a technique for high-precision wavefield decomposition of the reverse-time wavefield via the optical flow vector, enabling us to realize a correlation-weighted stacking imaging of each wavefield. Model experiments and real data processing show that the proposed traveltime calculation algorithm based on PINN offers high accuracy and good applicability in the excitation-time reverse-time migration imaging of complex models, and correlation-weighted stacking imaging based on optical flow vector-based wavefield separation can significantly suppress the noise with low wave-number and achieve high-precision imaging of complex models.
doi_str_mv 10.1093/jge/gxad106
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jge_gxad106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jge/gxad106</oup_id><sourcerecordid>10.1093/jge/gxad106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-23f8862329316e9a3ddbd9796e43cfb897aa77644320fad6e760202822b3fe503</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMKJH_CJCwp17DSPI6rKQ6rEBc6RY69TlySObLdp_4sPxG0qjuxlVrszs6tB6D4mTzEp2GxTw6zecxmT9AJN4iyhEY0TcvnXM3qNbpzbEMJCzSfoZ7kX2nOvTRd53QLWLa91V2NhOqmPY2xhB9bBuG51bU9sXHEHEoeG4359cFq4SHfK2DZMO9ha3gTwg7Hf2Fu-g-akF7wR22Z0GLRf4yGslIZGYgnCtL1x49WtO37BO2x6r4MKq8YMeAfCG3uLrhRvHNydcYq-Xpafi7do9fH6vnheRYLOCx9RpvI8pYwWLE6h4EzKShZZkULChKryIuM8y9IkYZQoLlPIUkIJzSmtmII5YVP0OPoKa5yzoMrehnzsoYxJeQy8DIGX58AD-2Fkm23_L_EXnaGIBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Excitation-time imaging condition reverse-time migration based on a physics-informed neural network traveltime calculation with wavefield decomposition using an optical flow vector</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><creator>Li, Jian ; Du, Guoning ; Qin, Dewen ; Yin, Wensun ; Tan, Jun ; Liu, Zhaolun ; Song, Peng</creator><creatorcontrib>Li, Jian ; Du, Guoning ; Qin, Dewen ; Yin, Wensun ; Tan, Jun ; Liu, Zhaolun ; Song, Peng</creatorcontrib><description>Abstract Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the influence of low-wave-number noise. In this paper, we introduce the physics-informed neural network (PINN) algorithm to achieve a high-precision traveltime calculation of the source forward wavefield. Subsequently, we introduce a technique for high-precision wavefield decomposition of the reverse-time wavefield via the optical flow vector, enabling us to realize a correlation-weighted stacking imaging of each wavefield. Model experiments and real data processing show that the proposed traveltime calculation algorithm based on PINN offers high accuracy and good applicability in the excitation-time reverse-time migration imaging of complex models, and correlation-weighted stacking imaging based on optical flow vector-based wavefield separation can significantly suppress the noise with low wave-number and achieve high-precision imaging of complex models.</description><identifier>ISSN: 1742-2132</identifier><identifier>EISSN: 1742-2140</identifier><identifier>DOI: 10.1093/jge/gxad106</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of geophysics and engineering, 2024-01, Vol.21 (1), p.200-220</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the SINOPEC Geophysical Research Institute Co., Ltd. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-23f8862329316e9a3ddbd9796e43cfb897aa77644320fad6e760202822b3fe503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1603,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Du, Guoning</creatorcontrib><creatorcontrib>Qin, Dewen</creatorcontrib><creatorcontrib>Yin, Wensun</creatorcontrib><creatorcontrib>Tan, Jun</creatorcontrib><creatorcontrib>Liu, Zhaolun</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><title>Excitation-time imaging condition reverse-time migration based on a physics-informed neural network traveltime calculation with wavefield decomposition using an optical flow vector</title><title>Journal of geophysics and engineering</title><description>Abstract Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the influence of low-wave-number noise. In this paper, we introduce the physics-informed neural network (PINN) algorithm to achieve a high-precision traveltime calculation of the source forward wavefield. Subsequently, we introduce a technique for high-precision wavefield decomposition of the reverse-time wavefield via the optical flow vector, enabling us to realize a correlation-weighted stacking imaging of each wavefield. Model experiments and real data processing show that the proposed traveltime calculation algorithm based on PINN offers high accuracy and good applicability in the excitation-time reverse-time migration imaging of complex models, and correlation-weighted stacking imaging based on optical flow vector-based wavefield separation can significantly suppress the noise with low wave-number and achieve high-precision imaging of complex models.</description><issn>1742-2132</issn><issn>1742-2140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9UMtOwzAQtBBIlMKJH_CJCwp17DSPI6rKQ6rEBc6RY69TlySObLdp_4sPxG0qjuxlVrszs6tB6D4mTzEp2GxTw6zecxmT9AJN4iyhEY0TcvnXM3qNbpzbEMJCzSfoZ7kX2nOvTRd53QLWLa91V2NhOqmPY2xhB9bBuG51bU9sXHEHEoeG4359cFq4SHfK2DZMO9ha3gTwg7Hf2Fu-g-akF7wR22Z0GLRf4yGslIZGYgnCtL1x49WtO37BO2x6r4MKq8YMeAfCG3uLrhRvHNydcYq-Xpafi7do9fH6vnheRYLOCx9RpvI8pYwWLE6h4EzKShZZkULChKryIuM8y9IkYZQoLlPIUkIJzSmtmII5YVP0OPoKa5yzoMrehnzsoYxJeQy8DIGX58AD-2Fkm23_L_EXnaGIBA</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Li, Jian</creator><creator>Du, Guoning</creator><creator>Qin, Dewen</creator><creator>Yin, Wensun</creator><creator>Tan, Jun</creator><creator>Liu, Zhaolun</creator><creator>Song, Peng</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240102</creationdate><title>Excitation-time imaging condition reverse-time migration based on a physics-informed neural network traveltime calculation with wavefield decomposition using an optical flow vector</title><author>Li, Jian ; Du, Guoning ; Qin, Dewen ; Yin, Wensun ; Tan, Jun ; Liu, Zhaolun ; Song, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-23f8862329316e9a3ddbd9796e43cfb897aa77644320fad6e760202822b3fe503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Du, Guoning</creatorcontrib><creatorcontrib>Qin, Dewen</creatorcontrib><creatorcontrib>Yin, Wensun</creatorcontrib><creatorcontrib>Tan, Jun</creatorcontrib><creatorcontrib>Liu, Zhaolun</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Journal of geophysics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jian</au><au>Du, Guoning</au><au>Qin, Dewen</au><au>Yin, Wensun</au><au>Tan, Jun</au><au>Liu, Zhaolun</au><au>Song, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitation-time imaging condition reverse-time migration based on a physics-informed neural network traveltime calculation with wavefield decomposition using an optical flow vector</atitle><jtitle>Journal of geophysics and engineering</jtitle><date>2024-01-02</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>200</spage><epage>220</epage><pages>200-220</pages><issn>1742-2132</issn><eissn>1742-2140</eissn><abstract>Abstract Although the excitation-time imaging condition offers a lower memory consumption and higher computational efficiency compared to cross-correlation imaging condition, it has not been widely used in industrial applications because of the accuracy problem of traveltime calculation and the influence of low-wave-number noise. In this paper, we introduce the physics-informed neural network (PINN) algorithm to achieve a high-precision traveltime calculation of the source forward wavefield. Subsequently, we introduce a technique for high-precision wavefield decomposition of the reverse-time wavefield via the optical flow vector, enabling us to realize a correlation-weighted stacking imaging of each wavefield. Model experiments and real data processing show that the proposed traveltime calculation algorithm based on PINN offers high accuracy and good applicability in the excitation-time reverse-time migration imaging of complex models, and correlation-weighted stacking imaging based on optical flow vector-based wavefield separation can significantly suppress the noise with low wave-number and achieve high-precision imaging of complex models.</abstract><pub>Oxford University Press</pub><doi>10.1093/jge/gxad106</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-2132
ispartof Journal of geophysics and engineering, 2024-01, Vol.21 (1), p.200-220
issn 1742-2132
1742-2140
language eng
recordid cdi_crossref_primary_10_1093_jge_gxad106
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection
title Excitation-time imaging condition reverse-time migration based on a physics-informed neural network traveltime calculation with wavefield decomposition using an optical flow vector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitation-time%20imaging%20condition%20reverse-time%20migration%20based%20on%20a%20physics-informed%20neural%20network%20traveltime%20calculation%20with%20wavefield%20decomposition%20using%20an%20optical%20flow%20vector&rft.jtitle=Journal%20of%20geophysics%20and%20engineering&rft.au=Li,%20Jian&rft.date=2024-01-02&rft.volume=21&rft.issue=1&rft.spage=200&rft.epage=220&rft.pages=200-220&rft.issn=1742-2132&rft.eissn=1742-2140&rft_id=info:doi/10.1093/jge/gxad106&rft_dat=%3Coup_cross%3E10.1093/jge/gxad106%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/jge/gxad106&rfr_iscdi=true