Augmented deep learning workflow for robust fault prediction over multiple tectonic regimes
Abstract Over the past decade, deep learning frameworks such as convolutional neural networks (CNNs) have made major research inroads in upstream oil and gas, with applications in seismic processing/imaging, velocity model building, petrophysics, geological seismic interpretation, all the way to dev...
Gespeichert in:
Veröffentlicht in: | Journal of geophysics and engineering 2022-08, Vol.19 (4), p.914-926 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 926 |
---|---|
container_issue | 4 |
container_start_page | 914 |
container_title | Journal of geophysics and engineering |
container_volume | 19 |
creator | Chen, Haidong Tang, Dazhen Liu, Ying Gu, Hongtao Zhou, Cunjian |
description | Abstract
Over the past decade, deep learning frameworks such as convolutional neural networks (CNNs) have made major research inroads in upstream oil and gas, with applications in seismic processing/imaging, velocity model building, petrophysics, geological seismic interpretation, all the way to development, production and supply chain logistics. CNN fault prediction centers around the idea of image edge detection and, for improved prediction results, three data-driven steps are recommended. First, pre-condition the seismic data to increase signal-to-noise ratio as much as possible: iterative dip-steered median filtering and principal component filtering are adopted to further improve signal-to-noise ratio and sharpness for edge detection. Second, a fault probability volume obtained through deep learning (DL) -based fault detection using a U-Net architecture, taking synthetic seismic models as samples that can improve DL-based fault prediction in lieu of readily available labeled fault sets that may be prohibitively time-consuming to generate. Finally, edge enhancement is performed on the inference results to improve precision and fault continuity. A comparative analysis between related edge enhancement technologies is also presented. Results for three different faulting modes (normal, reverse and strike-slip) over three real seismic field data sets from China demonstrate the robustness of the proposed workflow. |
doi_str_mv | 10.1093/jge/gxac056 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jge_gxac056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jge/gxac056</oup_id><sourcerecordid>10.1093/jge/gxac056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-fe680beb413bab02b2eac905a9576e38cb15cc686f9bed3256b3653edeac68813</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqUw8Qc8saBQP2I3GauKl1SpS5kYItu5jlySOLIdCv-eoFaM3OVcHX06w4fQLSUPlJR8sW9g0XwpQ4Q8QzO6zFnGaE7O_37OLtFVjHtC-HRiht5XY9NBn6DGNcCAW1Chd32DDz582NYfsPUBB6_HmLBVY5vwEKB2JjnfY_8JAXdT6YYWcAKTfO8MDtC4DuI1urCqjXBzyjl6e3rcrV-yzfb5db3aZIYTmjILsiAadE65VpowzUCZkghViqUEXhhNhTGykLbUUHMmpOZScKgnTBYF5XN0f9w1wccYwFZDcJ0K3xUl1a-XavJSnbxM9N2R9uPwL_gDN9NnJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Augmented deep learning workflow for robust fault prediction over multiple tectonic regimes</title><source>Oxford Journals Open Access Collection</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Haidong ; Tang, Dazhen ; Liu, Ying ; Gu, Hongtao ; Zhou, Cunjian</creator><creatorcontrib>Chen, Haidong ; Tang, Dazhen ; Liu, Ying ; Gu, Hongtao ; Zhou, Cunjian</creatorcontrib><description>Abstract
Over the past decade, deep learning frameworks such as convolutional neural networks (CNNs) have made major research inroads in upstream oil and gas, with applications in seismic processing/imaging, velocity model building, petrophysics, geological seismic interpretation, all the way to development, production and supply chain logistics. CNN fault prediction centers around the idea of image edge detection and, for improved prediction results, three data-driven steps are recommended. First, pre-condition the seismic data to increase signal-to-noise ratio as much as possible: iterative dip-steered median filtering and principal component filtering are adopted to further improve signal-to-noise ratio and sharpness for edge detection. Second, a fault probability volume obtained through deep learning (DL) -based fault detection using a U-Net architecture, taking synthetic seismic models as samples that can improve DL-based fault prediction in lieu of readily available labeled fault sets that may be prohibitively time-consuming to generate. Finally, edge enhancement is performed on the inference results to improve precision and fault continuity. A comparative analysis between related edge enhancement technologies is also presented. Results for three different faulting modes (normal, reverse and strike-slip) over three real seismic field data sets from China demonstrate the robustness of the proposed workflow.</description><identifier>ISSN: 1742-2132</identifier><identifier>EISSN: 1742-2140</identifier><identifier>DOI: 10.1093/jge/gxac056</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of geophysics and engineering, 2022-08, Vol.19 (4), p.914-926</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Sinopec Geophysical Research Institute. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-fe680beb413bab02b2eac905a9576e38cb15cc686f9bed3256b3653edeac68813</citedby><cites>FETCH-LOGICAL-c301t-fe680beb413bab02b2eac905a9576e38cb15cc686f9bed3256b3653edeac68813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,1598,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Haidong</creatorcontrib><creatorcontrib>Tang, Dazhen</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Gu, Hongtao</creatorcontrib><creatorcontrib>Zhou, Cunjian</creatorcontrib><title>Augmented deep learning workflow for robust fault prediction over multiple tectonic regimes</title><title>Journal of geophysics and engineering</title><description>Abstract
Over the past decade, deep learning frameworks such as convolutional neural networks (CNNs) have made major research inroads in upstream oil and gas, with applications in seismic processing/imaging, velocity model building, petrophysics, geological seismic interpretation, all the way to development, production and supply chain logistics. CNN fault prediction centers around the idea of image edge detection and, for improved prediction results, three data-driven steps are recommended. First, pre-condition the seismic data to increase signal-to-noise ratio as much as possible: iterative dip-steered median filtering and principal component filtering are adopted to further improve signal-to-noise ratio and sharpness for edge detection. Second, a fault probability volume obtained through deep learning (DL) -based fault detection using a U-Net architecture, taking synthetic seismic models as samples that can improve DL-based fault prediction in lieu of readily available labeled fault sets that may be prohibitively time-consuming to generate. Finally, edge enhancement is performed on the inference results to improve precision and fault continuity. A comparative analysis between related edge enhancement technologies is also presented. Results for three different faulting modes (normal, reverse and strike-slip) over three real seismic field data sets from China demonstrate the robustness of the proposed workflow.</description><issn>1742-2132</issn><issn>1742-2140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kDtPwzAUhS0EEqUw8Qc8saBQP2I3GauKl1SpS5kYItu5jlySOLIdCv-eoFaM3OVcHX06w4fQLSUPlJR8sW9g0XwpQ4Q8QzO6zFnGaE7O_37OLtFVjHtC-HRiht5XY9NBn6DGNcCAW1Chd32DDz582NYfsPUBB6_HmLBVY5vwEKB2JjnfY_8JAXdT6YYWcAKTfO8MDtC4DuI1urCqjXBzyjl6e3rcrV-yzfb5db3aZIYTmjILsiAadE65VpowzUCZkghViqUEXhhNhTGykLbUUHMmpOZScKgnTBYF5XN0f9w1wccYwFZDcJ0K3xUl1a-XavJSnbxM9N2R9uPwL_gDN9NnJw</recordid><startdate>20220829</startdate><enddate>20220829</enddate><creator>Chen, Haidong</creator><creator>Tang, Dazhen</creator><creator>Liu, Ying</creator><creator>Gu, Hongtao</creator><creator>Zhou, Cunjian</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220829</creationdate><title>Augmented deep learning workflow for robust fault prediction over multiple tectonic regimes</title><author>Chen, Haidong ; Tang, Dazhen ; Liu, Ying ; Gu, Hongtao ; Zhou, Cunjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-fe680beb413bab02b2eac905a9576e38cb15cc686f9bed3256b3653edeac68813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haidong</creatorcontrib><creatorcontrib>Tang, Dazhen</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Gu, Hongtao</creatorcontrib><creatorcontrib>Zhou, Cunjian</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Journal of geophysics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Haidong</au><au>Tang, Dazhen</au><au>Liu, Ying</au><au>Gu, Hongtao</au><au>Zhou, Cunjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented deep learning workflow for robust fault prediction over multiple tectonic regimes</atitle><jtitle>Journal of geophysics and engineering</jtitle><date>2022-08-29</date><risdate>2022</risdate><volume>19</volume><issue>4</issue><spage>914</spage><epage>926</epage><pages>914-926</pages><issn>1742-2132</issn><eissn>1742-2140</eissn><abstract>Abstract
Over the past decade, deep learning frameworks such as convolutional neural networks (CNNs) have made major research inroads in upstream oil and gas, with applications in seismic processing/imaging, velocity model building, petrophysics, geological seismic interpretation, all the way to development, production and supply chain logistics. CNN fault prediction centers around the idea of image edge detection and, for improved prediction results, three data-driven steps are recommended. First, pre-condition the seismic data to increase signal-to-noise ratio as much as possible: iterative dip-steered median filtering and principal component filtering are adopted to further improve signal-to-noise ratio and sharpness for edge detection. Second, a fault probability volume obtained through deep learning (DL) -based fault detection using a U-Net architecture, taking synthetic seismic models as samples that can improve DL-based fault prediction in lieu of readily available labeled fault sets that may be prohibitively time-consuming to generate. Finally, edge enhancement is performed on the inference results to improve precision and fault continuity. A comparative analysis between related edge enhancement technologies is also presented. Results for three different faulting modes (normal, reverse and strike-slip) over three real seismic field data sets from China demonstrate the robustness of the proposed workflow.</abstract><pub>Oxford University Press</pub><doi>10.1093/jge/gxac056</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-2132 |
ispartof | Journal of geophysics and engineering, 2022-08, Vol.19 (4), p.914-926 |
issn | 1742-2132 1742-2140 |
language | eng |
recordid | cdi_crossref_primary_10_1093_jge_gxac056 |
source | Oxford Journals Open Access Collection; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Augmented deep learning workflow for robust fault prediction over multiple tectonic regimes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20deep%20learning%20workflow%20for%20robust%20fault%20prediction%20over%20multiple%20tectonic%20regimes&rft.jtitle=Journal%20of%20geophysics%20and%20engineering&rft.au=Chen,%20Haidong&rft.date=2022-08-29&rft.volume=19&rft.issue=4&rft.spage=914&rft.epage=926&rft.pages=914-926&rft.issn=1742-2132&rft.eissn=1742-2140&rft_id=info:doi/10.1093/jge/gxac056&rft_dat=%3Coup_cross%3E10.1093/jge/gxac056%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/jge/gxac056&rfr_iscdi=true |