Detecting fracture zones in granite with seismic and audio-magnetotelluric methods

Abstract Geological disposal is a feasible and safe method for dealing with the high-level radioactive waste problem at present. The Beishan area is the key area preselected for high-level radioactive waste geological disposal in Gansu Province, China. The Jijicao rock block is currently the most ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysics and engineering 2020-10, Vol.17 (5), p.883-892
Hauptverfasser: Yao, Shancong, Wang, Wei, Wang, Ju, Su, Rui, Gao, Xing, Zhang, Ruliang, Duan, Shuxin, Chen, Shuang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue 5
container_start_page 883
container_title Journal of geophysics and engineering
container_volume 17
creator Yao, Shancong
Wang, Wei
Wang, Ju
Su, Rui
Gao, Xing
Zhang, Ruliang
Duan, Shuxin
Chen, Shuang
description Abstract Geological disposal is a feasible and safe method for dealing with the high-level radioactive waste problem at present. The Beishan area is the key area preselected for high-level radioactive waste geological disposal in Gansu Province, China. The Jijicao rock block is currently the most extensively studied area, where there are several fracture zones in borehole BS15. In 2011, a remarkable conductive anomaly near the BS15 was detected using a 4-km-long audio-magnetotelluric (AMT) profile with 50 m station space crossing the borehole. To study the anomaly, a short seismic survey was shot along the part of the AMT profile. This paper presents an example for detection of the fracture zones in granite using AMT and seismic methods at Beishan. The AMT data inversion model agrees with the borehole well-logging data and weak reflections are related to the fractured zones. The seismic detection may help in interpreting the cause of the conductive anomaly, and the conductive anomaly could determine whether there are fracture zones within the weak reflection areas. The simultaneous surveys can complement each other for detecting fracture zones. Besides this, such joint detection may be used to estimate whether there exist aquiferous fracture zones at depth.
doi_str_mv 10.1093/jge/gxaa037
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jge_gxaa037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jge/gxaa037</oup_id><sourcerecordid>10.1093/jge/gxaa037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-1879c3b2db619ab24e1612750f894c84ccdbdc0466b414f5ab58d6b4239984633</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsr_0BWbmRsXvPIUuoTCoLoesjjzjSlk5Qkg49f70iLS8_mHrgfZ_EhdEnJDSWSLzY9LPpPpQivj9CM1oIVjApy_Nc5O0VnKW0I4VPKGXq9gwwmO9_jLiqTxwj4O3hI2HncR-VdBvzh8honcGlwBitvsRqtC8Wgeg85ZNhuxzh9BsjrYNM5OunUNsHF4c7R-8P92_KpWL08Pi9vV4VhnOaCNrU0XDOrKyqVZgJoRVldkq6RwjTCGKutIaKqtKCiK5UuGzt1xqVsRMX5HF3vd00MKUXo2l10g4pfLSXtr4520tEedEz01Z4O4-5f8Ac3O2Iu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting fracture zones in granite with seismic and audio-magnetotelluric methods</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yao, Shancong ; Wang, Wei ; Wang, Ju ; Su, Rui ; Gao, Xing ; Zhang, Ruliang ; Duan, Shuxin ; Chen, Shuang</creator><creatorcontrib>Yao, Shancong ; Wang, Wei ; Wang, Ju ; Su, Rui ; Gao, Xing ; Zhang, Ruliang ; Duan, Shuxin ; Chen, Shuang</creatorcontrib><description>Abstract Geological disposal is a feasible and safe method for dealing with the high-level radioactive waste problem at present. The Beishan area is the key area preselected for high-level radioactive waste geological disposal in Gansu Province, China. The Jijicao rock block is currently the most extensively studied area, where there are several fracture zones in borehole BS15. In 2011, a remarkable conductive anomaly near the BS15 was detected using a 4-km-long audio-magnetotelluric (AMT) profile with 50 m station space crossing the borehole. To study the anomaly, a short seismic survey was shot along the part of the AMT profile. This paper presents an example for detection of the fracture zones in granite using AMT and seismic methods at Beishan. The AMT data inversion model agrees with the borehole well-logging data and weak reflections are related to the fractured zones. The seismic detection may help in interpreting the cause of the conductive anomaly, and the conductive anomaly could determine whether there are fracture zones within the weak reflection areas. The simultaneous surveys can complement each other for detecting fracture zones. Besides this, such joint detection may be used to estimate whether there exist aquiferous fracture zones at depth.</description><identifier>ISSN: 1742-2132</identifier><identifier>EISSN: 1742-2140</identifier><identifier>DOI: 10.1093/jge/gxaa037</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of geophysics and engineering, 2020-10, Vol.17 (5), p.883-892</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Sinopec Geophysical Research Institute. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231t-1879c3b2db619ab24e1612750f894c84ccdbdc0466b414f5ab58d6b4239984633</citedby><cites>FETCH-LOGICAL-c231t-1879c3b2db619ab24e1612750f894c84ccdbdc0466b414f5ab58d6b4239984633</cites><orcidid>0000-0002-3526-9160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1604,27924,27925</link.rule.ids></links><search><creatorcontrib>Yao, Shancong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Wang, Ju</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Gao, Xing</creatorcontrib><creatorcontrib>Zhang, Ruliang</creatorcontrib><creatorcontrib>Duan, Shuxin</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><title>Detecting fracture zones in granite with seismic and audio-magnetotelluric methods</title><title>Journal of geophysics and engineering</title><description>Abstract Geological disposal is a feasible and safe method for dealing with the high-level radioactive waste problem at present. The Beishan area is the key area preselected for high-level radioactive waste geological disposal in Gansu Province, China. The Jijicao rock block is currently the most extensively studied area, where there are several fracture zones in borehole BS15. In 2011, a remarkable conductive anomaly near the BS15 was detected using a 4-km-long audio-magnetotelluric (AMT) profile with 50 m station space crossing the borehole. To study the anomaly, a short seismic survey was shot along the part of the AMT profile. This paper presents an example for detection of the fracture zones in granite using AMT and seismic methods at Beishan. The AMT data inversion model agrees with the borehole well-logging data and weak reflections are related to the fractured zones. The seismic detection may help in interpreting the cause of the conductive anomaly, and the conductive anomaly could determine whether there are fracture zones within the weak reflection areas. The simultaneous surveys can complement each other for detecting fracture zones. Besides this, such joint detection may be used to estimate whether there exist aquiferous fracture zones at depth.</description><issn>1742-2132</issn><issn>1742-2140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kEtLAzEUhYMoWKsr_0BWbmRsXvPIUuoTCoLoesjjzjSlk5Qkg49f70iLS8_mHrgfZ_EhdEnJDSWSLzY9LPpPpQivj9CM1oIVjApy_Nc5O0VnKW0I4VPKGXq9gwwmO9_jLiqTxwj4O3hI2HncR-VdBvzh8honcGlwBitvsRqtC8Wgeg85ZNhuxzh9BsjrYNM5OunUNsHF4c7R-8P92_KpWL08Pi9vV4VhnOaCNrU0XDOrKyqVZgJoRVldkq6RwjTCGKutIaKqtKCiK5UuGzt1xqVsRMX5HF3vd00MKUXo2l10g4pfLSXtr4520tEedEz01Z4O4-5f8Ac3O2Iu</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Yao, Shancong</creator><creator>Wang, Wei</creator><creator>Wang, Ju</creator><creator>Su, Rui</creator><creator>Gao, Xing</creator><creator>Zhang, Ruliang</creator><creator>Duan, Shuxin</creator><creator>Chen, Shuang</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3526-9160</orcidid></search><sort><creationdate>20201001</creationdate><title>Detecting fracture zones in granite with seismic and audio-magnetotelluric methods</title><author>Yao, Shancong ; Wang, Wei ; Wang, Ju ; Su, Rui ; Gao, Xing ; Zhang, Ruliang ; Duan, Shuxin ; Chen, Shuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-1879c3b2db619ab24e1612750f894c84ccdbdc0466b414f5ab58d6b4239984633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Shancong</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Wang, Ju</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Gao, Xing</creatorcontrib><creatorcontrib>Zhang, Ruliang</creatorcontrib><creatorcontrib>Duan, Shuxin</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>Journal of geophysics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Shancong</au><au>Wang, Wei</au><au>Wang, Ju</au><au>Su, Rui</au><au>Gao, Xing</au><au>Zhang, Ruliang</au><au>Duan, Shuxin</au><au>Chen, Shuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting fracture zones in granite with seismic and audio-magnetotelluric methods</atitle><jtitle>Journal of geophysics and engineering</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>17</volume><issue>5</issue><spage>883</spage><epage>892</epage><pages>883-892</pages><issn>1742-2132</issn><eissn>1742-2140</eissn><abstract>Abstract Geological disposal is a feasible and safe method for dealing with the high-level radioactive waste problem at present. The Beishan area is the key area preselected for high-level radioactive waste geological disposal in Gansu Province, China. The Jijicao rock block is currently the most extensively studied area, where there are several fracture zones in borehole BS15. In 2011, a remarkable conductive anomaly near the BS15 was detected using a 4-km-long audio-magnetotelluric (AMT) profile with 50 m station space crossing the borehole. To study the anomaly, a short seismic survey was shot along the part of the AMT profile. This paper presents an example for detection of the fracture zones in granite using AMT and seismic methods at Beishan. The AMT data inversion model agrees with the borehole well-logging data and weak reflections are related to the fractured zones. The seismic detection may help in interpreting the cause of the conductive anomaly, and the conductive anomaly could determine whether there are fracture zones within the weak reflection areas. The simultaneous surveys can complement each other for detecting fracture zones. Besides this, such joint detection may be used to estimate whether there exist aquiferous fracture zones at depth.</abstract><pub>Oxford University Press</pub><doi>10.1093/jge/gxaa037</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3526-9160</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-2132
ispartof Journal of geophysics and engineering, 2020-10, Vol.17 (5), p.883-892
issn 1742-2132
1742-2140
language eng
recordid cdi_crossref_primary_10_1093_jge_gxaa037
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals
title Detecting fracture zones in granite with seismic and audio-magnetotelluric methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20fracture%20zones%20in%20granite%20with%20seismic%20and%20audio-magnetotelluric%20methods&rft.jtitle=Journal%20of%20geophysics%20and%20engineering&rft.au=Yao,%20Shancong&rft.date=2020-10-01&rft.volume=17&rft.issue=5&rft.spage=883&rft.epage=892&rft.pages=883-892&rft.issn=1742-2132&rft.eissn=1742-2140&rft_id=info:doi/10.1093/jge/gxaa037&rft_dat=%3Coup_cross%3E10.1093/jge/gxaa037%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/jge/gxaa037&rfr_iscdi=true