Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2

The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biochemistry (Tokyo) 2010-03, Vol.147 (3), p.337-344
Hauptverfasser: Manya, Hiroshi, Akasaka-Manya, Keiko, Nakajima, Ai, Kawakita, Masao, Endo, Tamao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 3
container_start_page 337
container_title Journal of biochemistry (Tokyo)
container_volume 147
creator Manya, Hiroshi
Akasaka-Manya, Keiko
Nakajima, Ai
Kawakita, Masao
Endo, Tamao
description The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms for predicting transmembrane helices to construct the secondary structural models of human POMT1 and POMT2. In these models, POMT1 and POMT2 have seven- and nine-transmembrane helices and contain four and five potential N-glycosylation sites, respectively. To determine whether these sites are actually glycosylated, we prepared mutant proteins that were defective in each site by site-directed mutagenesis. Three of the POMT1 sites and all of the POMT2 sites were found to be N-glycosylated, suggesting that these sites face the luminal side of the endoplasmic reticulum. Mutation of any single site did not significantly affect POMT activity, but mutations of all N-glycosylation sites of either POMT1 or POMT2 caused a loss of POMT activity. The loss of activity appeared to be due to the decreased hydrophilicity. These results suggest that the N-glycosylation of POMT1 and POMT2 is required for maintaining the conformation as well as the activity of the POMT1-POMT2 complex.
doi_str_mv 10.1093/jb/mvp170
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jb_mvp170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jb/mvp170</oup_id><sourcerecordid>10.1093/jb/mvp170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-5319f0e9f80694a6f65369f5e70a6f9c97cfc78b21e3f5a748beaa0152785a6c3</originalsourceid><addsrcrecordid>eNp90M9PwjAUB_DGaATRg_-A9uDFw6Rd13U9KlExQSEICeHSdKPF4X6lLcT99w5H9Obh5b2XfN47fAG4xOgOI076m7if7yrM0BHoYkZDzw8pPgZdhHzscT9YdMCZtZv96hNyCjqYRxEiLOoCMS0zBUsN37x1VieysDAtYC7TwjWVFmvoPhSUiUt3qav3sDKlU40Ze7ksitLWmTPNmVZGWmXhZPw6w1AWq5_JPwcnWmZWXRx6D8yfHmeDoTcaP78M7kdeEnDsPEow10hxHaGQBzLUISUh11Qx1Cw84SzRCYtiHyuiqWRBFCspEaY-i6gME9IDt-3fxJTWGqVFZdJcmlpgJPYhiU0s2pAae9XaahvnavUnD6k04KYF5bb694_XstQ69fULpfkUISOMiuFiKd6WdDl5mCIxaPx167UshVyb1Ir5u48wQThClASMfAM0GoeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Manya, Hiroshi ; Akasaka-Manya, Keiko ; Nakajima, Ai ; Kawakita, Masao ; Endo, Tamao</creator><creatorcontrib>Manya, Hiroshi ; Akasaka-Manya, Keiko ; Nakajima, Ai ; Kawakita, Masao ; Endo, Tamao</creatorcontrib><description>The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms for predicting transmembrane helices to construct the secondary structural models of human POMT1 and POMT2. In these models, POMT1 and POMT2 have seven- and nine-transmembrane helices and contain four and five potential N-glycosylation sites, respectively. To determine whether these sites are actually glycosylated, we prepared mutant proteins that were defective in each site by site-directed mutagenesis. Three of the POMT1 sites and all of the POMT2 sites were found to be N-glycosylated, suggesting that these sites face the luminal side of the endoplasmic reticulum. Mutation of any single site did not significantly affect POMT activity, but mutations of all N-glycosylation sites of either POMT1 or POMT2 caused a loss of POMT activity. The loss of activity appeared to be due to the decreased hydrophilicity. These results suggest that the N-glycosylation of POMT1 and POMT2 is required for maintaining the conformation as well as the activity of the POMT1-POMT2 complex.</description><identifier>ISSN: 0021-924X</identifier><identifier>EISSN: 1756-2651</identifier><identifier>DOI: 10.1093/jb/mvp170</identifier><identifier>PMID: 19880378</identifier><language>eng</language><publisher>England: Japanese Biochemical Society</publisher><subject>Amino Acid Sequence ; Anti-Bacterial Agents - pharmacology ; Cell Line ; Endoplasmic Reticulum - enzymology ; Glycosylation ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase - metabolism ; Mannosyltransferases - chemistry ; Mannosyltransferases - drug effects ; Mannosyltransferases - metabolism ; Models, Molecular ; Molecular Sequence Data ; Muscular Dystrophies - metabolism ; N-glycosylation ; Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism ; Polysaccharides - metabolism ; POMT1 ; POMT2 ; protein O-mannosyltransferase ; Protein Structure, Secondary ; secondary structure ; Solubility - drug effects ; Tunicamycin - pharmacology</subject><ispartof>Journal of biochemistry (Tokyo), 2010-03, Vol.147 (3), p.337-344</ispartof><rights>The Authors 2009. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-5319f0e9f80694a6f65369f5e70a6f9c97cfc78b21e3f5a748beaa0152785a6c3</citedby><cites>FETCH-LOGICAL-c491t-5319f0e9f80694a6f65369f5e70a6f9c97cfc78b21e3f5a748beaa0152785a6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19880378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manya, Hiroshi</creatorcontrib><creatorcontrib>Akasaka-Manya, Keiko</creatorcontrib><creatorcontrib>Nakajima, Ai</creatorcontrib><creatorcontrib>Kawakita, Masao</creatorcontrib><creatorcontrib>Endo, Tamao</creatorcontrib><title>Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2</title><title>Journal of biochemistry (Tokyo)</title><addtitle>J Biochem</addtitle><description>The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms for predicting transmembrane helices to construct the secondary structural models of human POMT1 and POMT2. In these models, POMT1 and POMT2 have seven- and nine-transmembrane helices and contain four and five potential N-glycosylation sites, respectively. To determine whether these sites are actually glycosylated, we prepared mutant proteins that were defective in each site by site-directed mutagenesis. Three of the POMT1 sites and all of the POMT2 sites were found to be N-glycosylated, suggesting that these sites face the luminal side of the endoplasmic reticulum. Mutation of any single site did not significantly affect POMT activity, but mutations of all N-glycosylation sites of either POMT1 or POMT2 caused a loss of POMT activity. The loss of activity appeared to be due to the decreased hydrophilicity. These results suggest that the N-glycosylation of POMT1 and POMT2 is required for maintaining the conformation as well as the activity of the POMT1-POMT2 complex.</description><subject>Amino Acid Sequence</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Cell Line</subject><subject>Endoplasmic Reticulum - enzymology</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase - metabolism</subject><subject>Mannosyltransferases - chemistry</subject><subject>Mannosyltransferases - drug effects</subject><subject>Mannosyltransferases - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Muscular Dystrophies - metabolism</subject><subject>N-glycosylation</subject><subject>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism</subject><subject>Polysaccharides - metabolism</subject><subject>POMT1</subject><subject>POMT2</subject><subject>protein O-mannosyltransferase</subject><subject>Protein Structure, Secondary</subject><subject>secondary structure</subject><subject>Solubility - drug effects</subject><subject>Tunicamycin - pharmacology</subject><issn>0021-924X</issn><issn>1756-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M9PwjAUB_DGaATRg_-A9uDFw6Rd13U9KlExQSEICeHSdKPF4X6lLcT99w5H9Obh5b2XfN47fAG4xOgOI076m7if7yrM0BHoYkZDzw8pPgZdhHzscT9YdMCZtZv96hNyCjqYRxEiLOoCMS0zBUsN37x1VieysDAtYC7TwjWVFmvoPhSUiUt3qav3sDKlU40Ze7ksitLWmTPNmVZGWmXhZPw6w1AWq5_JPwcnWmZWXRx6D8yfHmeDoTcaP78M7kdeEnDsPEow10hxHaGQBzLUISUh11Qx1Cw84SzRCYtiHyuiqWRBFCspEaY-i6gME9IDt-3fxJTWGqVFZdJcmlpgJPYhiU0s2pAae9XaahvnavUnD6k04KYF5bb694_XstQ69fULpfkUISOMiuFiKd6WdDl5mCIxaPx167UshVyb1Ir5u48wQThClASMfAM0GoeE</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Manya, Hiroshi</creator><creator>Akasaka-Manya, Keiko</creator><creator>Nakajima, Ai</creator><creator>Kawakita, Masao</creator><creator>Endo, Tamao</creator><general>Japanese Biochemical Society</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100301</creationdate><title>Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2</title><author>Manya, Hiroshi ; Akasaka-Manya, Keiko ; Nakajima, Ai ; Kawakita, Masao ; Endo, Tamao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-5319f0e9f80694a6f65369f5e70a6f9c97cfc78b21e3f5a748beaa0152785a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Cell Line</topic><topic>Endoplasmic Reticulum - enzymology</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase - metabolism</topic><topic>Mannosyltransferases - chemistry</topic><topic>Mannosyltransferases - drug effects</topic><topic>Mannosyltransferases - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Muscular Dystrophies - metabolism</topic><topic>N-glycosylation</topic><topic>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism</topic><topic>Polysaccharides - metabolism</topic><topic>POMT1</topic><topic>POMT2</topic><topic>protein O-mannosyltransferase</topic><topic>Protein Structure, Secondary</topic><topic>secondary structure</topic><topic>Solubility - drug effects</topic><topic>Tunicamycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manya, Hiroshi</creatorcontrib><creatorcontrib>Akasaka-Manya, Keiko</creatorcontrib><creatorcontrib>Nakajima, Ai</creatorcontrib><creatorcontrib>Kawakita, Masao</creatorcontrib><creatorcontrib>Endo, Tamao</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of biochemistry (Tokyo)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manya, Hiroshi</au><au>Akasaka-Manya, Keiko</au><au>Nakajima, Ai</au><au>Kawakita, Masao</au><au>Endo, Tamao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2</atitle><jtitle>Journal of biochemistry (Tokyo)</jtitle><addtitle>J Biochem</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>147</volume><issue>3</issue><spage>337</spage><epage>344</epage><pages>337-344</pages><issn>0021-924X</issn><eissn>1756-2651</eissn><abstract>The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms for predicting transmembrane helices to construct the secondary structural models of human POMT1 and POMT2. In these models, POMT1 and POMT2 have seven- and nine-transmembrane helices and contain four and five potential N-glycosylation sites, respectively. To determine whether these sites are actually glycosylated, we prepared mutant proteins that were defective in each site by site-directed mutagenesis. Three of the POMT1 sites and all of the POMT2 sites were found to be N-glycosylated, suggesting that these sites face the luminal side of the endoplasmic reticulum. Mutation of any single site did not significantly affect POMT activity, but mutations of all N-glycosylation sites of either POMT1 or POMT2 caused a loss of POMT activity. The loss of activity appeared to be due to the decreased hydrophilicity. These results suggest that the N-glycosylation of POMT1 and POMT2 is required for maintaining the conformation as well as the activity of the POMT1-POMT2 complex.</abstract><cop>England</cop><pub>Japanese Biochemical Society</pub><pmid>19880378</pmid><doi>10.1093/jb/mvp170</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-924X
ispartof Journal of biochemistry (Tokyo), 2010-03, Vol.147 (3), p.337-344
issn 0021-924X
1756-2651
language eng
recordid cdi_crossref_primary_10_1093_jb_mvp170
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Alma/SFX Local Collection
subjects Amino Acid Sequence
Anti-Bacterial Agents - pharmacology
Cell Line
Endoplasmic Reticulum - enzymology
Glycosylation
Humans
Hydrophobic and Hydrophilic Interactions
Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase - metabolism
Mannosyltransferases - chemistry
Mannosyltransferases - drug effects
Mannosyltransferases - metabolism
Models, Molecular
Molecular Sequence Data
Muscular Dystrophies - metabolism
N-glycosylation
Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism
Polysaccharides - metabolism
POMT1
POMT2
protein O-mannosyltransferase
Protein Structure, Secondary
secondary structure
Solubility - drug effects
Tunicamycin - pharmacology
title Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20N-glycans%20in%20maintaining%20the%20activity%20of%20protein%20O-mannosyltransferases%20POMT1%20and%20POMT2&rft.jtitle=Journal%20of%20biochemistry%20(Tokyo)&rft.au=Manya,%20Hiroshi&rft.date=2010-03-01&rft.volume=147&rft.issue=3&rft.spage=337&rft.epage=344&rft.pages=337-344&rft.issn=0021-924X&rft.eissn=1756-2651&rft_id=info:doi/10.1093/jb/mvp170&rft_dat=%3Coup_cross%3E10.1093/jb/mvp170%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19880378&rft_oup_id=10.1093/jb/mvp170&rfr_iscdi=true