Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2
The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms...
Gespeichert in:
Veröffentlicht in: | Journal of biochemistry (Tokyo) 2010-03, Vol.147 (3), p.337-344 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 344 |
---|---|
container_issue | 3 |
container_start_page | 337 |
container_title | Journal of biochemistry (Tokyo) |
container_volume | 147 |
creator | Manya, Hiroshi Akasaka-Manya, Keiko Nakajima, Ai Kawakita, Masao Endo, Tamao |
description | The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms for predicting transmembrane helices to construct the secondary structural models of human POMT1 and POMT2. In these models, POMT1 and POMT2 have seven- and nine-transmembrane helices and contain four and five potential N-glycosylation sites, respectively. To determine whether these sites are actually glycosylated, we prepared mutant proteins that were defective in each site by site-directed mutagenesis. Three of the POMT1 sites and all of the POMT2 sites were found to be N-glycosylated, suggesting that these sites face the luminal side of the endoplasmic reticulum. Mutation of any single site did not significantly affect POMT activity, but mutations of all N-glycosylation sites of either POMT1 or POMT2 caused a loss of POMT activity. The loss of activity appeared to be due to the decreased hydrophilicity. These results suggest that the N-glycosylation of POMT1 and POMT2 is required for maintaining the conformation as well as the activity of the POMT1-POMT2 complex. |
doi_str_mv | 10.1093/jb/mvp170 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_jb_mvp170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jb/mvp170</oup_id><sourcerecordid>10.1093/jb/mvp170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-5319f0e9f80694a6f65369f5e70a6f9c97cfc78b21e3f5a748beaa0152785a6c3</originalsourceid><addsrcrecordid>eNp90M9PwjAUB_DGaATRg_-A9uDFw6Rd13U9KlExQSEICeHSdKPF4X6lLcT99w5H9Obh5b2XfN47fAG4xOgOI076m7if7yrM0BHoYkZDzw8pPgZdhHzscT9YdMCZtZv96hNyCjqYRxEiLOoCMS0zBUsN37x1VieysDAtYC7TwjWVFmvoPhSUiUt3qav3sDKlU40Ze7ksitLWmTPNmVZGWmXhZPw6w1AWq5_JPwcnWmZWXRx6D8yfHmeDoTcaP78M7kdeEnDsPEow10hxHaGQBzLUISUh11Qx1Cw84SzRCYtiHyuiqWRBFCspEaY-i6gME9IDt-3fxJTWGqVFZdJcmlpgJPYhiU0s2pAae9XaahvnavUnD6k04KYF5bb694_XstQ69fULpfkUISOMiuFiKd6WdDl5mCIxaPx167UshVyb1Ir5u48wQThClASMfAM0GoeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Manya, Hiroshi ; Akasaka-Manya, Keiko ; Nakajima, Ai ; Kawakita, Masao ; Endo, Tamao</creator><creatorcontrib>Manya, Hiroshi ; Akasaka-Manya, Keiko ; Nakajima, Ai ; Kawakita, Masao ; Endo, Tamao</creatorcontrib><description>The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms for predicting transmembrane helices to construct the secondary structural models of human POMT1 and POMT2. In these models, POMT1 and POMT2 have seven- and nine-transmembrane helices and contain four and five potential N-glycosylation sites, respectively. To determine whether these sites are actually glycosylated, we prepared mutant proteins that were defective in each site by site-directed mutagenesis. Three of the POMT1 sites and all of the POMT2 sites were found to be N-glycosylated, suggesting that these sites face the luminal side of the endoplasmic reticulum. Mutation of any single site did not significantly affect POMT activity, but mutations of all N-glycosylation sites of either POMT1 or POMT2 caused a loss of POMT activity. The loss of activity appeared to be due to the decreased hydrophilicity. These results suggest that the N-glycosylation of POMT1 and POMT2 is required for maintaining the conformation as well as the activity of the POMT1-POMT2 complex.</description><identifier>ISSN: 0021-924X</identifier><identifier>EISSN: 1756-2651</identifier><identifier>DOI: 10.1093/jb/mvp170</identifier><identifier>PMID: 19880378</identifier><language>eng</language><publisher>England: Japanese Biochemical Society</publisher><subject>Amino Acid Sequence ; Anti-Bacterial Agents - pharmacology ; Cell Line ; Endoplasmic Reticulum - enzymology ; Glycosylation ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase - metabolism ; Mannosyltransferases - chemistry ; Mannosyltransferases - drug effects ; Mannosyltransferases - metabolism ; Models, Molecular ; Molecular Sequence Data ; Muscular Dystrophies - metabolism ; N-glycosylation ; Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism ; Polysaccharides - metabolism ; POMT1 ; POMT2 ; protein O-mannosyltransferase ; Protein Structure, Secondary ; secondary structure ; Solubility - drug effects ; Tunicamycin - pharmacology</subject><ispartof>Journal of biochemistry (Tokyo), 2010-03, Vol.147 (3), p.337-344</ispartof><rights>The Authors 2009. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-5319f0e9f80694a6f65369f5e70a6f9c97cfc78b21e3f5a748beaa0152785a6c3</citedby><cites>FETCH-LOGICAL-c491t-5319f0e9f80694a6f65369f5e70a6f9c97cfc78b21e3f5a748beaa0152785a6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19880378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manya, Hiroshi</creatorcontrib><creatorcontrib>Akasaka-Manya, Keiko</creatorcontrib><creatorcontrib>Nakajima, Ai</creatorcontrib><creatorcontrib>Kawakita, Masao</creatorcontrib><creatorcontrib>Endo, Tamao</creatorcontrib><title>Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2</title><title>Journal of biochemistry (Tokyo)</title><addtitle>J Biochem</addtitle><description>The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms for predicting transmembrane helices to construct the secondary structural models of human POMT1 and POMT2. In these models, POMT1 and POMT2 have seven- and nine-transmembrane helices and contain four and five potential N-glycosylation sites, respectively. To determine whether these sites are actually glycosylated, we prepared mutant proteins that were defective in each site by site-directed mutagenesis. Three of the POMT1 sites and all of the POMT2 sites were found to be N-glycosylated, suggesting that these sites face the luminal side of the endoplasmic reticulum. Mutation of any single site did not significantly affect POMT activity, but mutations of all N-glycosylation sites of either POMT1 or POMT2 caused a loss of POMT activity. The loss of activity appeared to be due to the decreased hydrophilicity. These results suggest that the N-glycosylation of POMT1 and POMT2 is required for maintaining the conformation as well as the activity of the POMT1-POMT2 complex.</description><subject>Amino Acid Sequence</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Cell Line</subject><subject>Endoplasmic Reticulum - enzymology</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase - metabolism</subject><subject>Mannosyltransferases - chemistry</subject><subject>Mannosyltransferases - drug effects</subject><subject>Mannosyltransferases - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Muscular Dystrophies - metabolism</subject><subject>N-glycosylation</subject><subject>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism</subject><subject>Polysaccharides - metabolism</subject><subject>POMT1</subject><subject>POMT2</subject><subject>protein O-mannosyltransferase</subject><subject>Protein Structure, Secondary</subject><subject>secondary structure</subject><subject>Solubility - drug effects</subject><subject>Tunicamycin - pharmacology</subject><issn>0021-924X</issn><issn>1756-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90M9PwjAUB_DGaATRg_-A9uDFw6Rd13U9KlExQSEICeHSdKPF4X6lLcT99w5H9Obh5b2XfN47fAG4xOgOI076m7if7yrM0BHoYkZDzw8pPgZdhHzscT9YdMCZtZv96hNyCjqYRxEiLOoCMS0zBUsN37x1VieysDAtYC7TwjWVFmvoPhSUiUt3qav3sDKlU40Ze7ksitLWmTPNmVZGWmXhZPw6w1AWq5_JPwcnWmZWXRx6D8yfHmeDoTcaP78M7kdeEnDsPEow10hxHaGQBzLUISUh11Qx1Cw84SzRCYtiHyuiqWRBFCspEaY-i6gME9IDt-3fxJTWGqVFZdJcmlpgJPYhiU0s2pAae9XaahvnavUnD6k04KYF5bb694_XstQ69fULpfkUISOMiuFiKd6WdDl5mCIxaPx167UshVyb1Ir5u48wQThClASMfAM0GoeE</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Manya, Hiroshi</creator><creator>Akasaka-Manya, Keiko</creator><creator>Nakajima, Ai</creator><creator>Kawakita, Masao</creator><creator>Endo, Tamao</creator><general>Japanese Biochemical Society</general><general>Oxford University Press</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100301</creationdate><title>Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2</title><author>Manya, Hiroshi ; Akasaka-Manya, Keiko ; Nakajima, Ai ; Kawakita, Masao ; Endo, Tamao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-5319f0e9f80694a6f65369f5e70a6f9c97cfc78b21e3f5a748beaa0152785a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Cell Line</topic><topic>Endoplasmic Reticulum - enzymology</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase - metabolism</topic><topic>Mannosyltransferases - chemistry</topic><topic>Mannosyltransferases - drug effects</topic><topic>Mannosyltransferases - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Muscular Dystrophies - metabolism</topic><topic>N-glycosylation</topic><topic>Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism</topic><topic>Polysaccharides - metabolism</topic><topic>POMT1</topic><topic>POMT2</topic><topic>protein O-mannosyltransferase</topic><topic>Protein Structure, Secondary</topic><topic>secondary structure</topic><topic>Solubility - drug effects</topic><topic>Tunicamycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manya, Hiroshi</creatorcontrib><creatorcontrib>Akasaka-Manya, Keiko</creatorcontrib><creatorcontrib>Nakajima, Ai</creatorcontrib><creatorcontrib>Kawakita, Masao</creatorcontrib><creatorcontrib>Endo, Tamao</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of biochemistry (Tokyo)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manya, Hiroshi</au><au>Akasaka-Manya, Keiko</au><au>Nakajima, Ai</au><au>Kawakita, Masao</au><au>Endo, Tamao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2</atitle><jtitle>Journal of biochemistry (Tokyo)</jtitle><addtitle>J Biochem</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>147</volume><issue>3</issue><spage>337</spage><epage>344</epage><pages>337-344</pages><issn>0021-924X</issn><eissn>1756-2651</eissn><abstract>The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms for predicting transmembrane helices to construct the secondary structural models of human POMT1 and POMT2. In these models, POMT1 and POMT2 have seven- and nine-transmembrane helices and contain four and five potential N-glycosylation sites, respectively. To determine whether these sites are actually glycosylated, we prepared mutant proteins that were defective in each site by site-directed mutagenesis. Three of the POMT1 sites and all of the POMT2 sites were found to be N-glycosylated, suggesting that these sites face the luminal side of the endoplasmic reticulum. Mutation of any single site did not significantly affect POMT activity, but mutations of all N-glycosylation sites of either POMT1 or POMT2 caused a loss of POMT activity. The loss of activity appeared to be due to the decreased hydrophilicity. These results suggest that the N-glycosylation of POMT1 and POMT2 is required for maintaining the conformation as well as the activity of the POMT1-POMT2 complex.</abstract><cop>England</cop><pub>Japanese Biochemical Society</pub><pmid>19880378</pmid><doi>10.1093/jb/mvp170</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-924X |
ispartof | Journal of biochemistry (Tokyo), 2010-03, Vol.147 (3), p.337-344 |
issn | 0021-924X 1756-2651 |
language | eng |
recordid | cdi_crossref_primary_10_1093_jb_mvp170 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Anti-Bacterial Agents - pharmacology Cell Line Endoplasmic Reticulum - enzymology Glycosylation Humans Hydrophobic and Hydrophilic Interactions Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase - metabolism Mannosyltransferases - chemistry Mannosyltransferases - drug effects Mannosyltransferases - metabolism Models, Molecular Molecular Sequence Data Muscular Dystrophies - metabolism N-glycosylation Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase - metabolism Polysaccharides - metabolism POMT1 POMT2 protein O-mannosyltransferase Protein Structure, Secondary secondary structure Solubility - drug effects Tunicamycin - pharmacology |
title | Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20N-glycans%20in%20maintaining%20the%20activity%20of%20protein%20O-mannosyltransferases%20POMT1%20and%20POMT2&rft.jtitle=Journal%20of%20biochemistry%20(Tokyo)&rft.au=Manya,%20Hiroshi&rft.date=2010-03-01&rft.volume=147&rft.issue=3&rft.spage=337&rft.epage=344&rft.pages=337-344&rft.issn=0021-924X&rft.eissn=1756-2651&rft_id=info:doi/10.1093/jb/mvp170&rft_dat=%3Coup_cross%3E10.1093/jb/mvp170%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19880378&rft_oup_id=10.1093/jb/mvp170&rfr_iscdi=true |