Bridging photosynthesis and crop yield formation with a mechanistic model of whole-plant carbon–nitrogen interaction

Abstract Crop yield is determined by potential harvest organ size, source organ photosynthesis and carbohydrate partitioning. Filling the harvest organ efficiently remains a challenge. Here, we developed a kinetic model of rice grain filling, which scales from the primary biochemical and biophysical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:in silico plants 2023-07, Vol.5 (2)
Hauptverfasser: Chang, Tian-Gen, Wei, Zhong-Wei, Shi, Zai, Xiao, Yi, Zhao, Honglong, Chang, Shuo-Qi, Qu, Mingnan, Song, Qingfeng, Chen, Faming, Miao, Fenfen, Zhu, Xin-Guang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title in silico plants
container_volume 5
creator Chang, Tian-Gen
Wei, Zhong-Wei
Shi, Zai
Xiao, Yi
Zhao, Honglong
Chang, Shuo-Qi
Qu, Mingnan
Song, Qingfeng
Chen, Faming
Miao, Fenfen
Zhu, Xin-Guang
description Abstract Crop yield is determined by potential harvest organ size, source organ photosynthesis and carbohydrate partitioning. Filling the harvest organ efficiently remains a challenge. Here, we developed a kinetic model of rice grain filling, which scales from the primary biochemical and biophysical processes of photosynthesis to whole-plant carbon and nitrogen dynamics. The model reproduces the rice yield formation process under different environmental and genetic perturbations. In silico screening identified a range of post-anthesis targets—both established and novel—that can be manipulated to enhance rice yield. Remarkably, we pinpointed the stability of grain-filling rate from flowering to harvest as a critical factor for maximizing grain yield. This finding was further validated in two independent super-high-yielding rice cultivars, each yielding approximately 21 t ha−1 of rough rice at 14% moisture content. Furthermore, we revealed that stabilizing the grain-filling rate could lead to a potential yield increase of 30–40% in an elite rice cultivar. Notably, the instantaneous grain-filling rates around 15- and 38-day post-flowering significantly influence grain yield; and we introduced an innovative in situ approach using ear respiratory rates for precise quantification of these rates. We finally derived an equation to predict the maximum dried brown rice yield (Y, t ha−1) of a cultivar based on its potential gross photosynthetic accumulation from flowering to harvest (Apc, t CO2 ha−1): Y = 0.74 × Apc + 1.9. Overall, this work establishes a framework for quantitatively dissecting crop physiology and designing high-yielding ideotypes.
doi_str_mv 10.1093/insilicoplants/diad011
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_insilicoplants_diad011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/insilicoplants/diad011</oup_id><sourcerecordid>10.1093/insilicoplants/diad011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-9e97007da0f97d8f108892a1396c3f6b6e0f6668d0cc07fc99aba4c6b4039a8b3</originalsourceid><addsrcrecordid>eNqNkEtOwzAURS0EElXpFpA3EPrcJE48hIqfVIkJjCPHn-ahxI5sQ9UZe2CHrISWdgAzRu9OztV9h5BLBlcMRD5HF7FH5cdeuhTnGqUGxk7IZFGyKithUZ7-yudkFuMrwC4WZS7EhLzfBNRrdGs6dj75uHWpMxEjlU5TFfxIt2h6Ta0Pg0zoHd1g6qikg1GddBgTKjp4bXrqLd10vjfZzxaqZGi9-_r4dJiCXxtH0SUTpNq3XJAzK_toZsc7JS93t8_Lh2z1dP-4vF5lKi_KlAkjKoBKS7Ci0rVlUNdiIVkuuMotb7kByzmvNSgFlVVCyFYWircF5ELWbT4l_NC7eyXGYGwzBhxk2DYMmr3A5q_A5ihwB7ID6N_G_zLffT6AUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bridging photosynthesis and crop yield formation with a mechanistic model of whole-plant carbon–nitrogen interaction</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chang, Tian-Gen ; Wei, Zhong-Wei ; Shi, Zai ; Xiao, Yi ; Zhao, Honglong ; Chang, Shuo-Qi ; Qu, Mingnan ; Song, Qingfeng ; Chen, Faming ; Miao, Fenfen ; Zhu, Xin-Guang</creator><contributor>Marshall-Colon, Amy</contributor><creatorcontrib>Chang, Tian-Gen ; Wei, Zhong-Wei ; Shi, Zai ; Xiao, Yi ; Zhao, Honglong ; Chang, Shuo-Qi ; Qu, Mingnan ; Song, Qingfeng ; Chen, Faming ; Miao, Fenfen ; Zhu, Xin-Guang ; Marshall-Colon, Amy</creatorcontrib><description>Abstract Crop yield is determined by potential harvest organ size, source organ photosynthesis and carbohydrate partitioning. Filling the harvest organ efficiently remains a challenge. Here, we developed a kinetic model of rice grain filling, which scales from the primary biochemical and biophysical processes of photosynthesis to whole-plant carbon and nitrogen dynamics. The model reproduces the rice yield formation process under different environmental and genetic perturbations. In silico screening identified a range of post-anthesis targets—both established and novel—that can be manipulated to enhance rice yield. Remarkably, we pinpointed the stability of grain-filling rate from flowering to harvest as a critical factor for maximizing grain yield. This finding was further validated in two independent super-high-yielding rice cultivars, each yielding approximately 21 t ha−1 of rough rice at 14% moisture content. Furthermore, we revealed that stabilizing the grain-filling rate could lead to a potential yield increase of 30–40% in an elite rice cultivar. Notably, the instantaneous grain-filling rates around 15- and 38-day post-flowering significantly influence grain yield; and we introduced an innovative in situ approach using ear respiratory rates for precise quantification of these rates. We finally derived an equation to predict the maximum dried brown rice yield (Y, t ha−1) of a cultivar based on its potential gross photosynthetic accumulation from flowering to harvest (Apc, t CO2 ha−1): Y = 0.74 × Apc + 1.9. Overall, this work establishes a framework for quantitatively dissecting crop physiology and designing high-yielding ideotypes.</description><identifier>ISSN: 2517-5025</identifier><identifier>EISSN: 2517-5025</identifier><identifier>DOI: 10.1093/insilicoplants/diad011</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><ispartof>in silico plants, 2023-07, Vol.5 (2)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-9e97007da0f97d8f108892a1396c3f6b6e0f6668d0cc07fc99aba4c6b4039a8b3</citedby><cites>FETCH-LOGICAL-c345t-9e97007da0f97d8f108892a1396c3f6b6e0f6668d0cc07fc99aba4c6b4039a8b3</cites><orcidid>0000-0002-9556-8074 ; 0000-0003-4314-6897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1604,27924,27925</link.rule.ids></links><search><contributor>Marshall-Colon, Amy</contributor><creatorcontrib>Chang, Tian-Gen</creatorcontrib><creatorcontrib>Wei, Zhong-Wei</creatorcontrib><creatorcontrib>Shi, Zai</creatorcontrib><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Zhao, Honglong</creatorcontrib><creatorcontrib>Chang, Shuo-Qi</creatorcontrib><creatorcontrib>Qu, Mingnan</creatorcontrib><creatorcontrib>Song, Qingfeng</creatorcontrib><creatorcontrib>Chen, Faming</creatorcontrib><creatorcontrib>Miao, Fenfen</creatorcontrib><creatorcontrib>Zhu, Xin-Guang</creatorcontrib><title>Bridging photosynthesis and crop yield formation with a mechanistic model of whole-plant carbon–nitrogen interaction</title><title>in silico plants</title><description>Abstract Crop yield is determined by potential harvest organ size, source organ photosynthesis and carbohydrate partitioning. Filling the harvest organ efficiently remains a challenge. Here, we developed a kinetic model of rice grain filling, which scales from the primary biochemical and biophysical processes of photosynthesis to whole-plant carbon and nitrogen dynamics. The model reproduces the rice yield formation process under different environmental and genetic perturbations. In silico screening identified a range of post-anthesis targets—both established and novel—that can be manipulated to enhance rice yield. Remarkably, we pinpointed the stability of grain-filling rate from flowering to harvest as a critical factor for maximizing grain yield. This finding was further validated in two independent super-high-yielding rice cultivars, each yielding approximately 21 t ha−1 of rough rice at 14% moisture content. Furthermore, we revealed that stabilizing the grain-filling rate could lead to a potential yield increase of 30–40% in an elite rice cultivar. Notably, the instantaneous grain-filling rates around 15- and 38-day post-flowering significantly influence grain yield; and we introduced an innovative in situ approach using ear respiratory rates for precise quantification of these rates. We finally derived an equation to predict the maximum dried brown rice yield (Y, t ha−1) of a cultivar based on its potential gross photosynthetic accumulation from flowering to harvest (Apc, t CO2 ha−1): Y = 0.74 × Apc + 1.9. Overall, this work establishes a framework for quantitatively dissecting crop physiology and designing high-yielding ideotypes.</description><issn>2517-5025</issn><issn>2517-5025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkEtOwzAURS0EElXpFpA3EPrcJE48hIqfVIkJjCPHn-ahxI5sQ9UZe2CHrISWdgAzRu9OztV9h5BLBlcMRD5HF7FH5cdeuhTnGqUGxk7IZFGyKithUZ7-yudkFuMrwC4WZS7EhLzfBNRrdGs6dj75uHWpMxEjlU5TFfxIt2h6Ta0Pg0zoHd1g6qikg1GddBgTKjp4bXrqLd10vjfZzxaqZGi9-_r4dJiCXxtH0SUTpNq3XJAzK_toZsc7JS93t8_Lh2z1dP-4vF5lKi_KlAkjKoBKS7Ci0rVlUNdiIVkuuMotb7kByzmvNSgFlVVCyFYWircF5ELWbT4l_NC7eyXGYGwzBhxk2DYMmr3A5q_A5ihwB7ID6N_G_zLffT6AUw</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chang, Tian-Gen</creator><creator>Wei, Zhong-Wei</creator><creator>Shi, Zai</creator><creator>Xiao, Yi</creator><creator>Zhao, Honglong</creator><creator>Chang, Shuo-Qi</creator><creator>Qu, Mingnan</creator><creator>Song, Qingfeng</creator><creator>Chen, Faming</creator><creator>Miao, Fenfen</creator><creator>Zhu, Xin-Guang</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9556-8074</orcidid><orcidid>https://orcid.org/0000-0003-4314-6897</orcidid></search><sort><creationdate>20230701</creationdate><title>Bridging photosynthesis and crop yield formation with a mechanistic model of whole-plant carbon–nitrogen interaction</title><author>Chang, Tian-Gen ; Wei, Zhong-Wei ; Shi, Zai ; Xiao, Yi ; Zhao, Honglong ; Chang, Shuo-Qi ; Qu, Mingnan ; Song, Qingfeng ; Chen, Faming ; Miao, Fenfen ; Zhu, Xin-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-9e97007da0f97d8f108892a1396c3f6b6e0f6668d0cc07fc99aba4c6b4039a8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Tian-Gen</creatorcontrib><creatorcontrib>Wei, Zhong-Wei</creatorcontrib><creatorcontrib>Shi, Zai</creatorcontrib><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Zhao, Honglong</creatorcontrib><creatorcontrib>Chang, Shuo-Qi</creatorcontrib><creatorcontrib>Qu, Mingnan</creatorcontrib><creatorcontrib>Song, Qingfeng</creatorcontrib><creatorcontrib>Chen, Faming</creatorcontrib><creatorcontrib>Miao, Fenfen</creatorcontrib><creatorcontrib>Zhu, Xin-Guang</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><jtitle>in silico plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Tian-Gen</au><au>Wei, Zhong-Wei</au><au>Shi, Zai</au><au>Xiao, Yi</au><au>Zhao, Honglong</au><au>Chang, Shuo-Qi</au><au>Qu, Mingnan</au><au>Song, Qingfeng</au><au>Chen, Faming</au><au>Miao, Fenfen</au><au>Zhu, Xin-Guang</au><au>Marshall-Colon, Amy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging photosynthesis and crop yield formation with a mechanistic model of whole-plant carbon–nitrogen interaction</atitle><jtitle>in silico plants</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>5</volume><issue>2</issue><issn>2517-5025</issn><eissn>2517-5025</eissn><abstract>Abstract Crop yield is determined by potential harvest organ size, source organ photosynthesis and carbohydrate partitioning. Filling the harvest organ efficiently remains a challenge. Here, we developed a kinetic model of rice grain filling, which scales from the primary biochemical and biophysical processes of photosynthesis to whole-plant carbon and nitrogen dynamics. The model reproduces the rice yield formation process under different environmental and genetic perturbations. In silico screening identified a range of post-anthesis targets—both established and novel—that can be manipulated to enhance rice yield. Remarkably, we pinpointed the stability of grain-filling rate from flowering to harvest as a critical factor for maximizing grain yield. This finding was further validated in two independent super-high-yielding rice cultivars, each yielding approximately 21 t ha−1 of rough rice at 14% moisture content. Furthermore, we revealed that stabilizing the grain-filling rate could lead to a potential yield increase of 30–40% in an elite rice cultivar. Notably, the instantaneous grain-filling rates around 15- and 38-day post-flowering significantly influence grain yield; and we introduced an innovative in situ approach using ear respiratory rates for precise quantification of these rates. We finally derived an equation to predict the maximum dried brown rice yield (Y, t ha−1) of a cultivar based on its potential gross photosynthetic accumulation from flowering to harvest (Apc, t CO2 ha−1): Y = 0.74 × Apc + 1.9. Overall, this work establishes a framework for quantitatively dissecting crop physiology and designing high-yielding ideotypes.</abstract><cop>UK</cop><pub>Oxford University Press</pub><doi>10.1093/insilicoplants/diad011</doi><orcidid>https://orcid.org/0000-0002-9556-8074</orcidid><orcidid>https://orcid.org/0000-0003-4314-6897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2517-5025
ispartof in silico plants, 2023-07, Vol.5 (2)
issn 2517-5025
2517-5025
language eng
recordid cdi_crossref_primary_10_1093_insilicoplants_diad011
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals
title Bridging photosynthesis and crop yield formation with a mechanistic model of whole-plant carbon–nitrogen interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20photosynthesis%20and%20crop%20yield%20formation%20with%20a%20mechanistic%20model%20of%20whole-plant%20carbon%E2%80%93nitrogen%20interaction&rft.jtitle=in%20silico%20plants&rft.au=Chang,%20Tian-Gen&rft.date=2023-07-01&rft.volume=5&rft.issue=2&rft.issn=2517-5025&rft.eissn=2517-5025&rft_id=info:doi/10.1093/insilicoplants/diad011&rft_dat=%3Coup_cross%3E10.1093/insilicoplants/diad011%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/insilicoplants/diad011&rfr_iscdi=true