An L p -Functional Busemann–Petty Centroid Inequality
For a convex body $K\subset \mathbb{R}^n$, let $\Gamma _pK$ be its $L_p$-centroid body. The $L_p$-Busemann–Petty centroid inequality states that $\operatorname{vol}(\Gamma _pK) \geq \operatorname{vol}(K)$, with equality if and only if $K$ is an ellipsoid centered at the origin. In this work, we prov...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2021-05, Vol.2021 (10), p.7947-7965 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7965 |
---|---|
container_issue | 10 |
container_start_page | 7947 |
container_title | International mathematics research notices |
container_volume | 2021 |
creator | Haddad, Julián E Jiménez, Carlos Hugo da Silva, Letícia A |
description | For a convex body $K\subset \mathbb{R}^n$, let $\Gamma _pK$ be its $L_p$-centroid body. The $L_p$-Busemann–Petty centroid inequality states that $\operatorname{vol}(\Gamma _pK) \geq \operatorname{vol}(K)$, with equality if and only if $K$ is an ellipsoid centered at the origin. In this work, we prove inequalities for a type of functional $L_r$-mixed volume for $1 \leq r < n$ and establish, as a consequence, a functional version of the $L_p$-Busemann–Petty centroid inequality. |
doi_str_mv | 10.1093/imrn/rnz392 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnz392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnz392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-a9e98f72dbaf51f1eaab057ecdfd65f4421671e27700a0a5acaa51f4baadd4853</originalsourceid><addsrcrecordid>eNotzzFOwzAYBWALgUQpTFzAOzL9bSdxMpaIQqVIdChz9Ce2paDEKbYzhIk7cENOQqsyvTc8Pekj5J7DI4dCrrrBu5V3X7IQF2TBs1wxEIm6PHZQkqlC5NfkJoQPAAE8lwui1o5W9EDZZnJt7EaHPX2aghnQud_vn52JcaalcdGPnaZbZz4n7Ls435Iri30wd_-5JO-b5335yqq3l225rlgrACLDwhS5VUI3aFNuuUFsIFWm1VZnqU0SwTPFjVAKAAFTbBGPu6RB1DrJU7kkD-ff1o8heGPrg-8G9HPNoT6Z65O5PpvlHyQITUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An L p -Functional Busemann–Petty Centroid Inequality</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Haddad, Julián E ; Jiménez, Carlos Hugo ; da Silva, Letícia A</creator><creatorcontrib>Haddad, Julián E ; Jiménez, Carlos Hugo ; da Silva, Letícia A</creatorcontrib><description>For a convex body $K\subset \mathbb{R}^n$, let $\Gamma _pK$ be its $L_p$-centroid body. The $L_p$-Busemann–Petty centroid inequality states that $\operatorname{vol}(\Gamma _pK) \geq \operatorname{vol}(K)$, with equality if and only if $K$ is an ellipsoid centered at the origin. In this work, we prove inequalities for a type of functional $L_r$-mixed volume for $1 \leq r < n$ and establish, as a consequence, a functional version of the $L_p$-Busemann–Petty centroid inequality.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnz392</identifier><language>eng</language><ispartof>International mathematics research notices, 2021-05, Vol.2021 (10), p.7947-7965</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c200t-a9e98f72dbaf51f1eaab057ecdfd65f4421671e27700a0a5acaa51f4baadd4853</citedby><cites>FETCH-LOGICAL-c200t-a9e98f72dbaf51f1eaab057ecdfd65f4421671e27700a0a5acaa51f4baadd4853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haddad, Julián E</creatorcontrib><creatorcontrib>Jiménez, Carlos Hugo</creatorcontrib><creatorcontrib>da Silva, Letícia A</creatorcontrib><title>An L p -Functional Busemann–Petty Centroid Inequality</title><title>International mathematics research notices</title><description>For a convex body $K\subset \mathbb{R}^n$, let $\Gamma _pK$ be its $L_p$-centroid body. The $L_p$-Busemann–Petty centroid inequality states that $\operatorname{vol}(\Gamma _pK) \geq \operatorname{vol}(K)$, with equality if and only if $K$ is an ellipsoid centered at the origin. In this work, we prove inequalities for a type of functional $L_r$-mixed volume for $1 \leq r < n$ and establish, as a consequence, a functional version of the $L_p$-Busemann–Petty centroid inequality.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotzzFOwzAYBWALgUQpTFzAOzL9bSdxMpaIQqVIdChz9Ce2paDEKbYzhIk7cENOQqsyvTc8Pekj5J7DI4dCrrrBu5V3X7IQF2TBs1wxEIm6PHZQkqlC5NfkJoQPAAE8lwui1o5W9EDZZnJt7EaHPX2aghnQud_vn52JcaalcdGPnaZbZz4n7Ls435Iri30wd_-5JO-b5335yqq3l225rlgrACLDwhS5VUI3aFNuuUFsIFWm1VZnqU0SwTPFjVAKAAFTbBGPu6RB1DrJU7kkD-ff1o8heGPrg-8G9HPNoT6Z65O5PpvlHyQITUI</recordid><startdate>20210521</startdate><enddate>20210521</enddate><creator>Haddad, Julián E</creator><creator>Jiménez, Carlos Hugo</creator><creator>da Silva, Letícia A</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210521</creationdate><title>An L p -Functional Busemann–Petty Centroid Inequality</title><author>Haddad, Julián E ; Jiménez, Carlos Hugo ; da Silva, Letícia A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-a9e98f72dbaf51f1eaab057ecdfd65f4421671e27700a0a5acaa51f4baadd4853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haddad, Julián E</creatorcontrib><creatorcontrib>Jiménez, Carlos Hugo</creatorcontrib><creatorcontrib>da Silva, Letícia A</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddad, Julián E</au><au>Jiménez, Carlos Hugo</au><au>da Silva, Letícia A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An L p -Functional Busemann–Petty Centroid Inequality</atitle><jtitle>International mathematics research notices</jtitle><date>2021-05-21</date><risdate>2021</risdate><volume>2021</volume><issue>10</issue><spage>7947</spage><epage>7965</epage><pages>7947-7965</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>For a convex body $K\subset \mathbb{R}^n$, let $\Gamma _pK$ be its $L_p$-centroid body. The $L_p$-Busemann–Petty centroid inequality states that $\operatorname{vol}(\Gamma _pK) \geq \operatorname{vol}(K)$, with equality if and only if $K$ is an ellipsoid centered at the origin. In this work, we prove inequalities for a type of functional $L_r$-mixed volume for $1 \leq r < n$ and establish, as a consequence, a functional version of the $L_p$-Busemann–Petty centroid inequality.</abstract><doi>10.1093/imrn/rnz392</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2021-05, Vol.2021 (10), p.7947-7965 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnz392 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | An L p -Functional Busemann–Petty Centroid Inequality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20L%20p%20-Functional%20Busemann%E2%80%93Petty%20Centroid%20Inequality&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Haddad,%20Juli%C3%A1n%20E&rft.date=2021-05-21&rft.volume=2021&rft.issue=10&rft.spage=7947&rft.epage=7965&rft.pages=7947-7965&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnz392&rft_dat=%3Ccrossref%3E10_1093_imrn_rnz392%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |