The GL4 Rapoport–Zink Space

Abstract We give a description of the $\textrm{GL}_4$ Rapoport–Zink space, including the connected components, irreducible components, intersection behavior of the irreducible components, and Ekedahl–Oort stratification. As an application of this, we also give a description of the supersingular locu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2022-01, Vol.2022 (3), p.1825-1892
1. Verfasser: Fox, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1892
container_issue 3
container_start_page 1825
container_title International mathematics research notices
container_volume 2022
creator Fox, Maria
description Abstract We give a description of the $\textrm{GL}_4$ Rapoport–Zink space, including the connected components, irreducible components, intersection behavior of the irreducible components, and Ekedahl–Oort stratification. As an application of this, we also give a description of the supersingular locus of the Shimura variety for the group $\textrm{GU}(2,2)$ over a prime split in the relevant imaginary quadratic field.
doi_str_mv 10.1093/imrn/rnz225
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnz225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnz225</oup_id><sourcerecordid>10.1093/imrn/rnz225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1095-779c82106d4fea7e3dc110e5eb9d9950ebd3eedd6fd79e3de55f294c081e7d113</originalsourceid><addsrcrecordid>eNp9j8FKxDAURYMoOI6uXAtduZE67yVNkyxl0FEoDOi4cRMyyStWnTakutCV_-Af-iV2qOtZvQvvcC-HsVOESwQjZs0mtbPUfnEu99gES61y4IXaHzIokSvD9SE76vsXAA6oxYSdrZ4pW1RFdu9iF7v0_vv989S0r9lDdJ6O2UHt3no6-b9T9nhzvZrf5tVycTe_qnI_zMpcKeM1RyhDUZNTJIJHBJK0NsEYCbQOgiiEsg7KDF-Ssuam8KCRVEAUU3Yx9vrU9X2i2sbUbFz6tAh2a2a3ZnY0G-jzke4-4k7wD9tmT5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The GL4 Rapoport–Zink Space</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Fox, Maria</creator><creatorcontrib>Fox, Maria</creatorcontrib><description>Abstract We give a description of the $\textrm{GL}_4$ Rapoport–Zink space, including the connected components, irreducible components, intersection behavior of the irreducible components, and Ekedahl–Oort stratification. As an application of this, we also give a description of the supersingular locus of the Shimura variety for the group $\textrm{GU}(2,2)$ over a prime split in the relevant imaginary quadratic field.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnz225</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2022-01, Vol.2022 (3), p.1825-1892</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1095-779c82106d4fea7e3dc110e5eb9d9950ebd3eedd6fd79e3de55f294c081e7d113</citedby><cites>FETCH-LOGICAL-c1095-779c82106d4fea7e3dc110e5eb9d9950ebd3eedd6fd79e3de55f294c081e7d113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fox, Maria</creatorcontrib><title>The GL4 Rapoport–Zink Space</title><title>International mathematics research notices</title><description>Abstract We give a description of the $\textrm{GL}_4$ Rapoport–Zink space, including the connected components, irreducible components, intersection behavior of the irreducible components, and Ekedahl–Oort stratification. As an application of this, we also give a description of the supersingular locus of the Shimura variety for the group $\textrm{GU}(2,2)$ over a prime split in the relevant imaginary quadratic field.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKxDAURYMoOI6uXAtduZE67yVNkyxl0FEoDOi4cRMyyStWnTakutCV_-Af-iV2qOtZvQvvcC-HsVOESwQjZs0mtbPUfnEu99gES61y4IXaHzIokSvD9SE76vsXAA6oxYSdrZ4pW1RFdu9iF7v0_vv989S0r9lDdJ6O2UHt3no6-b9T9nhzvZrf5tVycTe_qnI_zMpcKeM1RyhDUZNTJIJHBJK0NsEYCbQOgiiEsg7KDF-Ssuam8KCRVEAUU3Yx9vrU9X2i2sbUbFz6tAh2a2a3ZnY0G-jzke4-4k7wD9tmT5k</recordid><startdate>20220128</startdate><enddate>20220128</enddate><creator>Fox, Maria</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220128</creationdate><title>The GL4 Rapoport–Zink Space</title><author>Fox, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1095-779c82106d4fea7e3dc110e5eb9d9950ebd3eedd6fd79e3de55f294c081e7d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fox, Maria</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fox, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The GL4 Rapoport–Zink Space</atitle><jtitle>International mathematics research notices</jtitle><date>2022-01-28</date><risdate>2022</risdate><volume>2022</volume><issue>3</issue><spage>1825</spage><epage>1892</epage><pages>1825-1892</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract We give a description of the $\textrm{GL}_4$ Rapoport–Zink space, including the connected components, irreducible components, intersection behavior of the irreducible components, and Ekedahl–Oort stratification. As an application of this, we also give a description of the supersingular locus of the Shimura variety for the group $\textrm{GU}(2,2)$ over a prime split in the relevant imaginary quadratic field.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnz225</doi><tpages>68</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2022-01, Vol.2022 (3), p.1825-1892
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnz225
source Oxford University Press Journals All Titles (1996-Current)
title The GL4 Rapoport–Zink Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20GL4%20Rapoport%E2%80%93Zink%20Space&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Fox,%20Maria&rft.date=2022-01-28&rft.volume=2022&rft.issue=3&rft.spage=1825&rft.epage=1892&rft.pages=1825-1892&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnz225&rft_dat=%3Coup_cross%3E10.1093/imrn/rnz225%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnz225&rfr_iscdi=true