Is the Affine Space Determined by Its Automorphism Group?
Abstract In this note we study the problem of characterizing the complex affine space ${\mathbb{A}}^n$ via its automorphism group. We prove the following. Let $X$ be an irreducible quasi-projective $n$-dimensional variety such that $\operatorname{Aut}(X)$ and $\operatorname{Aut}({\mathbb{A}}^n)$ are...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2021-03, Vol.2021 (6), p.4280-4300 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
In this note we study the problem of characterizing the complex affine space ${\mathbb{A}}^n$ via its automorphism group. We prove the following. Let $X$ be an irreducible quasi-projective $n$-dimensional variety such that $\operatorname{Aut}(X)$ and $\operatorname{Aut}({\mathbb{A}}^n)$ are isomorphic as abstract groups. If $X$ is either quasi-affine and toric or $X$ is smooth with Euler characteristic $\chi (X) \neq 0$ and finite Picard group $\operatorname{Pic}(X)$, then $X$ is isomorphic to ${\mathbb{A}}^n$.
The main ingredient is the following result. Let $X$ be a smooth irreducible quasi-projective variety of dimension $n$ with finite $\operatorname{Pic}(X)$. If $X$ admits a faithful $({\mathbb{Z}} / p {\mathbb{Z}})^n$-action for a prime $p$ and $\chi (X)$ is not divisible by $p$, then the identity component of the centralizer $\operatorname{Cent}_{\operatorname{Aut}(X)}( ({\mathbb{Z}} / p {\mathbb{Z}})^n)$ is a torus. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rny281 |