Poisson Λ-brackets for Differential–Difference Equations

Abstract We introduce the notion of a multiplicative Poisson $\lambda$-bracket, which plays the same role in the theory of Hamiltonian differential–difference equations as the usual Poisson $\lambda$-bracket plays in the theory of Hamiltonian partial differential equations (PDE). We classify multipl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2020-07, Vol.2020 (13), p.4144-4190
Hauptverfasser: De Sole, Alberto, Kac, Victor G, Valeri, Daniele, Wakimoto, Minoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We introduce the notion of a multiplicative Poisson $\lambda$-bracket, which plays the same role in the theory of Hamiltonian differential–difference equations as the usual Poisson $\lambda$-bracket plays in the theory of Hamiltonian partial differential equations (PDE). We classify multiplicative Poisson $\lambda$-brackets in one difference variable up to order 5. As an example, we demonstrate how to apply the Lenard–Magri scheme to a compatible pair of multiplicative Poisson $\lambda$-brackets of order 1 and 2, to establish integrability of the Volterra chain.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rny242