Poisson Λ-brackets for Differential–Difference Equations
Abstract We introduce the notion of a multiplicative Poisson $\lambda$-bracket, which plays the same role in the theory of Hamiltonian differential–difference equations as the usual Poisson $\lambda$-bracket plays in the theory of Hamiltonian partial differential equations (PDE). We classify multipl...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2020-07, Vol.2020 (13), p.4144-4190 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We introduce the notion of a multiplicative Poisson $\lambda$-bracket, which plays the same role in the theory of Hamiltonian differential–difference equations as the usual Poisson $\lambda$-bracket plays in the theory of Hamiltonian partial differential equations (PDE). We classify multiplicative Poisson $\lambda$-brackets in one difference variable up to order 5. As an example, we demonstrate how to apply the Lenard–Magri scheme to a compatible pair of multiplicative Poisson $\lambda$-brackets of order 1 and 2, to establish integrability of the Volterra chain. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rny242 |