On Some Local Cohomology Spectral Sequences

We introduce a formalism to produce several families of spectral sequences involving the derived functors of the limit and colimit functors over a finite partially ordered set. The 1st type of spectral sequences involves the left derived functors of the colimit of the direct system that we obtain by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2020-10, Vol.2020 (19), p.6197-6293
Hauptverfasser: Àlvarez Montaner, Josep, Boix, Alberto F, Zarzuela, Santiago
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6293
container_issue 19
container_start_page 6197
container_title International mathematics research notices
container_volume 2020
creator Àlvarez Montaner, Josep
Boix, Alberto F
Zarzuela, Santiago
description We introduce a formalism to produce several families of spectral sequences involving the derived functors of the limit and colimit functors over a finite partially ordered set. The 1st type of spectral sequences involves the left derived functors of the colimit of the direct system that we obtain by applying a family of functors to a single module. For the 2nd type we follow a completely different strategy as we start with the inverse system that we obtain by applying a covariant functor to an inverse system. The spectral sequences involve the right derived functors of the corresponding limit. We also have a version for contravariant functors. In all the introduced spectral sequences we provide sufficient conditions to ensure their degeneration at their 2nd page. As a consequence we obtain some decomposition theorems that greatly generalize the well-known decomposition formula for local cohomology modules of Stanley–Reisner rings given by Hochster.
doi_str_mv 10.1093/imrn/rny186
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rny186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rny186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-63e07a40cdf61c3ae896c410c52beee11c41b62309a2322838d8aca1711dbe3f3</originalsourceid><addsrcrecordid>eNotj01PwzAQRC1EJUrLiT-QexW66w22c0QRX1KkHgLnyHE2UJTExS6H_HtStaeZeYeRnhD3CA8IOW33Qxi3YZzQqCuxRGV0CjLT13MHTanOpbkRtzH-AEhAQ0ux2Y1J5QdOSu9snxT-2w--919TUh3YHcPMKv7949FxXItFZ_vId5dcic-X54_iLS13r-_FU5k6qeGYKmLQNgPXdgodWTa5chmCe5QNMyPOo1GSILeSpDRkWmOdRY3YNkwdrcTm_OuCjzFwVx_CfrBhqhHqk2d98qzPnvQPQlpG6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Some Local Cohomology Spectral Sequences</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Àlvarez Montaner, Josep ; Boix, Alberto F ; Zarzuela, Santiago</creator><creatorcontrib>Àlvarez Montaner, Josep ; Boix, Alberto F ; Zarzuela, Santiago</creatorcontrib><description>We introduce a formalism to produce several families of spectral sequences involving the derived functors of the limit and colimit functors over a finite partially ordered set. The 1st type of spectral sequences involves the left derived functors of the colimit of the direct system that we obtain by applying a family of functors to a single module. For the 2nd type we follow a completely different strategy as we start with the inverse system that we obtain by applying a covariant functor to an inverse system. The spectral sequences involve the right derived functors of the corresponding limit. We also have a version for contravariant functors. In all the introduced spectral sequences we provide sufficient conditions to ensure their degeneration at their 2nd page. As a consequence we obtain some decomposition theorems that greatly generalize the well-known decomposition formula for local cohomology modules of Stanley–Reisner rings given by Hochster.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rny186</identifier><language>eng</language><ispartof>International mathematics research notices, 2020-10, Vol.2020 (19), p.6197-6293</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-63e07a40cdf61c3ae896c410c52beee11c41b62309a2322838d8aca1711dbe3f3</citedby><cites>FETCH-LOGICAL-c270t-63e07a40cdf61c3ae896c410c52beee11c41b62309a2322838d8aca1711dbe3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Àlvarez Montaner, Josep</creatorcontrib><creatorcontrib>Boix, Alberto F</creatorcontrib><creatorcontrib>Zarzuela, Santiago</creatorcontrib><title>On Some Local Cohomology Spectral Sequences</title><title>International mathematics research notices</title><description>We introduce a formalism to produce several families of spectral sequences involving the derived functors of the limit and colimit functors over a finite partially ordered set. The 1st type of spectral sequences involves the left derived functors of the colimit of the direct system that we obtain by applying a family of functors to a single module. For the 2nd type we follow a completely different strategy as we start with the inverse system that we obtain by applying a covariant functor to an inverse system. The spectral sequences involve the right derived functors of the corresponding limit. We also have a version for contravariant functors. In all the introduced spectral sequences we provide sufficient conditions to ensure their degeneration at their 2nd page. As a consequence we obtain some decomposition theorems that greatly generalize the well-known decomposition formula for local cohomology modules of Stanley–Reisner rings given by Hochster.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotj01PwzAQRC1EJUrLiT-QexW66w22c0QRX1KkHgLnyHE2UJTExS6H_HtStaeZeYeRnhD3CA8IOW33Qxi3YZzQqCuxRGV0CjLT13MHTanOpbkRtzH-AEhAQ0ux2Y1J5QdOSu9snxT-2w--919TUh3YHcPMKv7949FxXItFZ_vId5dcic-X54_iLS13r-_FU5k6qeGYKmLQNgPXdgodWTa5chmCe5QNMyPOo1GSILeSpDRkWmOdRY3YNkwdrcTm_OuCjzFwVx_CfrBhqhHqk2d98qzPnvQPQlpG6g</recordid><startdate>20201009</startdate><enddate>20201009</enddate><creator>Àlvarez Montaner, Josep</creator><creator>Boix, Alberto F</creator><creator>Zarzuela, Santiago</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201009</creationdate><title>On Some Local Cohomology Spectral Sequences</title><author>Àlvarez Montaner, Josep ; Boix, Alberto F ; Zarzuela, Santiago</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-63e07a40cdf61c3ae896c410c52beee11c41b62309a2322838d8aca1711dbe3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Àlvarez Montaner, Josep</creatorcontrib><creatorcontrib>Boix, Alberto F</creatorcontrib><creatorcontrib>Zarzuela, Santiago</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Àlvarez Montaner, Josep</au><au>Boix, Alberto F</au><au>Zarzuela, Santiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Some Local Cohomology Spectral Sequences</atitle><jtitle>International mathematics research notices</jtitle><date>2020-10-09</date><risdate>2020</risdate><volume>2020</volume><issue>19</issue><spage>6197</spage><epage>6293</epage><pages>6197-6293</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We introduce a formalism to produce several families of spectral sequences involving the derived functors of the limit and colimit functors over a finite partially ordered set. The 1st type of spectral sequences involves the left derived functors of the colimit of the direct system that we obtain by applying a family of functors to a single module. For the 2nd type we follow a completely different strategy as we start with the inverse system that we obtain by applying a covariant functor to an inverse system. The spectral sequences involve the right derived functors of the corresponding limit. We also have a version for contravariant functors. In all the introduced spectral sequences we provide sufficient conditions to ensure their degeneration at their 2nd page. As a consequence we obtain some decomposition theorems that greatly generalize the well-known decomposition formula for local cohomology modules of Stanley–Reisner rings given by Hochster.</abstract><doi>10.1093/imrn/rny186</doi><tpages>97</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2020-10, Vol.2020 (19), p.6197-6293
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rny186
source Oxford University Press Journals All Titles (1996-Current)
title On Some Local Cohomology Spectral Sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Some%20Local%20Cohomology%20Spectral%20Sequences&rft.jtitle=International%20mathematics%20research%20notices&rft.au=%C3%80lvarez%20Montaner,%20Josep&rft.date=2020-10-09&rft.volume=2020&rft.issue=19&rft.spage=6197&rft.epage=6293&rft.pages=6197-6293&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rny186&rft_dat=%3Ccrossref%3E10_1093_imrn_rny186%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true