Local Properties of Riesz Minimal Energy Configurations and Equilibrium Measures
We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $A\subset \mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $s\in [p-2, p-1)$, we prove that the order of separation (as $N\to \infty$) is the...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2019-08, Vol.2019 (16), p.5066-5086 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5086 |
---|---|
container_issue | 16 |
container_start_page | 5066 |
container_title | International mathematics research notices |
container_volume | 2019 |
creator | Hardin, D P Reznikov, A Saff, E B Volberg, A |
description | We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $A\subset \mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $s\in [p-2, p-1)$, we prove that the order of separation (as $N\to \infty$) is the best possible. The same conclusions hold for the points that are a fixed positive distance from the boundary of $A$ whenever $A$ is any $p$-dimensional set. These estimates extend a result of Dahlberg for certain smooth $(p-1)$-dimensional surfaces when $s=p-2$ (the harmonic case). Furthermore, we obtain the same separation results for “greedy” $s$-energy points. We deduce our results from an upper regularity property of the $s$-equilibrium measure (i.e., the measure that solves the continuous minimal Riesz $s$-energy problem), and we show that this property holds under a local smoothness assumption on the set $A$. |
doi_str_mv | 10.1093/imrn/rnx262 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnx262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnx262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3e41966ba3150dfd1e03f16584a768c9eaaedabe63c738636d2b47e26b4e590d3</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMoOKdX_oHcS10-2iS9lDKd0OEQvS5p82ZE2mQmLTh_vR3z6jlw4HB4ELqn5JGSkq_cEP0q-h8m2AVaUKFkRlguL-dMJM9kydQ1uknpixBGqOILtKtDp3u8i-EAcXSQcLD4feYv3jrvhrlbe4j7I66Ct24_RT264BPW3uD19-R610Y3DXgLOk0R0i26srpPcPfPJfp8Xn9Um6x-e3mtnuqsY5KMGYeclkK0mtOCGGsoEG6pKFSupVBdCVqD0S0I3kmuBBeGtbkEJtocipIYvkQP590uhpQi2OYQ57vx2FDSnGQ0JxnNWQb_A9k4VVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local Properties of Riesz Minimal Energy Configurations and Equilibrium Measures</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hardin, D P ; Reznikov, A ; Saff, E B ; Volberg, A</creator><creatorcontrib>Hardin, D P ; Reznikov, A ; Saff, E B ; Volberg, A</creatorcontrib><description>We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $A\subset \mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $s\in [p-2, p-1)$, we prove that the order of separation (as $N\to \infty$) is the best possible. The same conclusions hold for the points that are a fixed positive distance from the boundary of $A$ whenever $A$ is any $p$-dimensional set. These estimates extend a result of Dahlberg for certain smooth $(p-1)$-dimensional surfaces when $s=p-2$ (the harmonic case). Furthermore, we obtain the same separation results for “greedy” $s$-energy points. We deduce our results from an upper regularity property of the $s$-equilibrium measure (i.e., the measure that solves the continuous minimal Riesz $s$-energy problem), and we show that this property holds under a local smoothness assumption on the set $A$.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnx262</identifier><language>eng</language><ispartof>International mathematics research notices, 2019-08, Vol.2019 (16), p.5066-5086</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-3e41966ba3150dfd1e03f16584a768c9eaaedabe63c738636d2b47e26b4e590d3</citedby><cites>FETCH-LOGICAL-c270t-3e41966ba3150dfd1e03f16584a768c9eaaedabe63c738636d2b47e26b4e590d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hardin, D P</creatorcontrib><creatorcontrib>Reznikov, A</creatorcontrib><creatorcontrib>Saff, E B</creatorcontrib><creatorcontrib>Volberg, A</creatorcontrib><title>Local Properties of Riesz Minimal Energy Configurations and Equilibrium Measures</title><title>International mathematics research notices</title><description>We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $A\subset \mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $s\in [p-2, p-1)$, we prove that the order of separation (as $N\to \infty$) is the best possible. The same conclusions hold for the points that are a fixed positive distance from the boundary of $A$ whenever $A$ is any $p$-dimensional set. These estimates extend a result of Dahlberg for certain smooth $(p-1)$-dimensional surfaces when $s=p-2$ (the harmonic case). Furthermore, we obtain the same separation results for “greedy” $s$-energy points. We deduce our results from an upper regularity property of the $s$-equilibrium measure (i.e., the measure that solves the continuous minimal Riesz $s$-energy problem), and we show that this property holds under a local smoothness assumption on the set $A$.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAYhYMoOKdX_oHcS10-2iS9lDKd0OEQvS5p82ZE2mQmLTh_vR3z6jlw4HB4ELqn5JGSkq_cEP0q-h8m2AVaUKFkRlguL-dMJM9kydQ1uknpixBGqOILtKtDp3u8i-EAcXSQcLD4feYv3jrvhrlbe4j7I66Ct24_RT264BPW3uD19-R610Y3DXgLOk0R0i26srpPcPfPJfp8Xn9Um6x-e3mtnuqsY5KMGYeclkK0mtOCGGsoEG6pKFSupVBdCVqD0S0I3kmuBBeGtbkEJtocipIYvkQP590uhpQi2OYQ57vx2FDSnGQ0JxnNWQb_A9k4VVo</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Hardin, D P</creator><creator>Reznikov, A</creator><creator>Saff, E B</creator><creator>Volberg, A</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190822</creationdate><title>Local Properties of Riesz Minimal Energy Configurations and Equilibrium Measures</title><author>Hardin, D P ; Reznikov, A ; Saff, E B ; Volberg, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3e41966ba3150dfd1e03f16584a768c9eaaedabe63c738636d2b47e26b4e590d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hardin, D P</creatorcontrib><creatorcontrib>Reznikov, A</creatorcontrib><creatorcontrib>Saff, E B</creatorcontrib><creatorcontrib>Volberg, A</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hardin, D P</au><au>Reznikov, A</au><au>Saff, E B</au><au>Volberg, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Properties of Riesz Minimal Energy Configurations and Equilibrium Measures</atitle><jtitle>International mathematics research notices</jtitle><date>2019-08-22</date><risdate>2019</risdate><volume>2019</volume><issue>16</issue><spage>5066</spage><epage>5086</epage><pages>5066-5086</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $A\subset \mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $s\in [p-2, p-1)$, we prove that the order of separation (as $N\to \infty$) is the best possible. The same conclusions hold for the points that are a fixed positive distance from the boundary of $A$ whenever $A$ is any $p$-dimensional set. These estimates extend a result of Dahlberg for certain smooth $(p-1)$-dimensional surfaces when $s=p-2$ (the harmonic case). Furthermore, we obtain the same separation results for “greedy” $s$-energy points. We deduce our results from an upper regularity property of the $s$-equilibrium measure (i.e., the measure that solves the continuous minimal Riesz $s$-energy problem), and we show that this property holds under a local smoothness assumption on the set $A$.</abstract><doi>10.1093/imrn/rnx262</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2019-08, Vol.2019 (16), p.5066-5086 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnx262 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Local Properties of Riesz Minimal Energy Configurations and Equilibrium Measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Properties%20of%20Riesz%20Minimal%20Energy%20Configurations%20and%20Equilibrium%20Measures&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Hardin,%20D%20P&rft.date=2019-08-22&rft.volume=2019&rft.issue=16&rft.spage=5066&rft.epage=5086&rft.pages=5066-5086&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnx262&rft_dat=%3Ccrossref%3E10_1093_imrn_rnx262%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |