Blow-up in Manifolds with Generalized Corners

Abstract We construct a functor from the category of manifolds with generalized corners to the category of complexes of toric monoids, and for every “refinement” of the complex associated to a manifold, we show there is a unique “blow-up”, that is, a new manifold mapping to the original one, which s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2018-04, Vol.2018 (8), p.2375-2415, Article 2375
1. Verfasser: Kottke, Chris
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2415
container_issue 8
container_start_page 2375
container_title International mathematics research notices
container_volume 2018
creator Kottke, Chris
description Abstract We construct a functor from the category of manifolds with generalized corners to the category of complexes of toric monoids, and for every “refinement” of the complex associated to a manifold, we show there is a unique “blow-up”, that is, a new manifold mapping to the original one, which satisfies a universal property and whose complex realizes the refinement. This was inspired in part by the work of Gillam and Molcho, though we work with manifolds with generalized corners, as developed by Joyce, which have embedded boundary faces, for which the appropriate objects (i.e., complexes of monoids) are simpler than they would be otherwise (i.e., monoidal spaces in the sense of Kato).
doi_str_mv 10.1093/imrn/rnw312
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnw312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnw312</oup_id><sourcerecordid>10.1093/imrn/rnw312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-c29d459d1351b9df6d050e5a18bcaacc0c80c94a3bd73357640aa824290969e83</originalsourceid><addsrcrecordid>eNp9j09LxDAUxIMouK6e_AI9eZG4L3_aJEctugorXvRc0iTFSDcpSZein94u60nQy7x5MDPwQ-iSwA0BxVZ-m8IqhYkReoQWpJICA-XiePYgGBaKylN0lvMHAAUi2QLhuz5OeDcUPhTPOvgu9jYXkx_fi7ULLunefzlb1DHNTz5HJ53us7v4uUv09nD_Wj_izcv6qb7dYEMrPs6qLC-VJawkrbJdZaEEV2oiW6O1MWAkGMU1a61grBQVB60l5VSBqpSTbImuD7smxZyT65oh-a1Onw2BZk_a7EmbA-mcJr_Sxo969DGMSfv-j87VoRN3w7_j34bRZf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Blow-up in Manifolds with Generalized Corners</title><source>Oxford Academic Journals (OUP)</source><creator>Kottke, Chris</creator><creatorcontrib>Kottke, Chris</creatorcontrib><description>Abstract We construct a functor from the category of manifolds with generalized corners to the category of complexes of toric monoids, and for every “refinement” of the complex associated to a manifold, we show there is a unique “blow-up”, that is, a new manifold mapping to the original one, which satisfies a universal property and whose complex realizes the refinement. This was inspired in part by the work of Gillam and Molcho, though we work with manifolds with generalized corners, as developed by Joyce, which have embedded boundary faces, for which the appropriate objects (i.e., complexes of monoids) are simpler than they would be otherwise (i.e., monoidal spaces in the sense of Kato).</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnw312</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2018-04, Vol.2018 (8), p.2375-2415, Article 2375</ispartof><rights>The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-c29d459d1351b9df6d050e5a18bcaacc0c80c94a3bd73357640aa824290969e83</citedby><cites>FETCH-LOGICAL-c264t-c29d459d1351b9df6d050e5a18bcaacc0c80c94a3bd73357640aa824290969e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Kottke, Chris</creatorcontrib><title>Blow-up in Manifolds with Generalized Corners</title><title>International mathematics research notices</title><description>Abstract We construct a functor from the category of manifolds with generalized corners to the category of complexes of toric monoids, and for every “refinement” of the complex associated to a manifold, we show there is a unique “blow-up”, that is, a new manifold mapping to the original one, which satisfies a universal property and whose complex realizes the refinement. This was inspired in part by the work of Gillam and Molcho, though we work with manifolds with generalized corners, as developed by Joyce, which have embedded boundary faces, for which the appropriate objects (i.e., complexes of monoids) are simpler than they would be otherwise (i.e., monoidal spaces in the sense of Kato).</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j09LxDAUxIMouK6e_AI9eZG4L3_aJEctugorXvRc0iTFSDcpSZein94u60nQy7x5MDPwQ-iSwA0BxVZ-m8IqhYkReoQWpJICA-XiePYgGBaKylN0lvMHAAUi2QLhuz5OeDcUPhTPOvgu9jYXkx_fi7ULLunefzlb1DHNTz5HJ53us7v4uUv09nD_Wj_izcv6qb7dYEMrPs6qLC-VJawkrbJdZaEEV2oiW6O1MWAkGMU1a61grBQVB60l5VSBqpSTbImuD7smxZyT65oh-a1Onw2BZk_a7EmbA-mcJr_Sxo969DGMSfv-j87VoRN3w7_j34bRZf0</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Kottke, Chris</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180424</creationdate><title>Blow-up in Manifolds with Generalized Corners</title><author>Kottke, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-c29d459d1351b9df6d050e5a18bcaacc0c80c94a3bd73357640aa824290969e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kottke, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kottke, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blow-up in Manifolds with Generalized Corners</atitle><jtitle>International mathematics research notices</jtitle><date>2018-04-24</date><risdate>2018</risdate><volume>2018</volume><issue>8</issue><spage>2375</spage><epage>2415</epage><pages>2375-2415</pages><artnum>2375</artnum><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract We construct a functor from the category of manifolds with generalized corners to the category of complexes of toric monoids, and for every “refinement” of the complex associated to a manifold, we show there is a unique “blow-up”, that is, a new manifold mapping to the original one, which satisfies a universal property and whose complex realizes the refinement. This was inspired in part by the work of Gillam and Molcho, though we work with manifolds with generalized corners, as developed by Joyce, which have embedded boundary faces, for which the appropriate objects (i.e., complexes of monoids) are simpler than they would be otherwise (i.e., monoidal spaces in the sense of Kato).</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnw312</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2018-04, Vol.2018 (8), p.2375-2415, Article 2375
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnw312
source Oxford Academic Journals (OUP)
title Blow-up in Manifolds with Generalized Corners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blow-up%20in%20Manifolds%20with%20Generalized%20Corners&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Kottke,%20Chris&rft.date=2018-04-24&rft.volume=2018&rft.issue=8&rft.spage=2375&rft.epage=2415&rft.pages=2375-2415&rft.artnum=2375&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnw312&rft_dat=%3Coup_cross%3E10.1093/imrn/rnw312%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnw312&rfr_iscdi=true