On the Naturality of the Spectral Sequence from Khovanov Homology to Heegaard Floer Homology

In [18], Ozsváth–Szabó established an algebraic relationship, in the form of a spectral sequence, between the reduced Khovanov homology of (the mirror of) a link and the Heegaard Floer homology of its double-branched cover. This relationship, extended in [19] and [4], was recast, in [5], as a specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2010-01, Vol.2010 (21), p.4159-4210
Hauptverfasser: Grigsby, J. Elisenda, Wehrli, Stephan M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4210
container_issue 21
container_start_page 4159
container_title International mathematics research notices
container_volume 2010
creator Grigsby, J. Elisenda
Wehrli, Stephan M.
description In [18], Ozsváth–Szabó established an algebraic relationship, in the form of a spectral sequence, between the reduced Khovanov homology of (the mirror of) a link and the Heegaard Floer homology of its double-branched cover. This relationship, extended in [19] and [4], was recast, in [5], as a specific instance of a broader connection between Khovanov- and Heegaard Floer-type homology theories, using a version of Heegaard Floer homology for sutured manifolds developed by Juhász in [7]. In the present work, we prove the naturality of the spectral sequence under certain elementary operations, using a generalization of Juhász’s surface decomposition theorem valid for decomposing surfaces geometrically disjoint from an imbedded framed link.
doi_str_mv 10.1093/imrn/rnq039
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnq039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_HXZ_742RD53G_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-58508cd69dc15e1d232be56c5375d558ba47e8c00f22b9616949b5ce87f10b213</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKdX_oHcS10-mia9lOnW4XDgVESEkKanW7VttrQb7t_bOdnVObzvwznwIHRNyS0lMR8Ula8Hvl4THp-gHo2UDAgL5Wm3E8kDGTN1ji6a5osQRqjiPfQ5q3G7BPxk2o03ZdHusMv_kvkKbNtFeA7rDdQWcO5dhR-Xbmtqt8WJq1zpFjvcOpwALIzxGR6VDvyxukRnuSkbuPqfffQ6engZJsF0Np4M76aB5US1gVCCKJtFcWapAJoxzlIQkRVcikwIlZpQgrKE5IylcUSjOIxTYUHJnJKUUd5HN4e71rum8ZDrlS8q43eaEr0Xo_di9EFMRwcHumha-Dmixn_rSHYvdfL-oWXInu8FH-s3_gvpHGdX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Naturality of the Spectral Sequence from Khovanov Homology to Heegaard Floer Homology</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Grigsby, J. Elisenda ; Wehrli, Stephan M.</creator><creatorcontrib>Grigsby, J. Elisenda ; Wehrli, Stephan M.</creatorcontrib><description>In [18], Ozsváth–Szabó established an algebraic relationship, in the form of a spectral sequence, between the reduced Khovanov homology of (the mirror of) a link and the Heegaard Floer homology of its double-branched cover. This relationship, extended in [19] and [4], was recast, in [5], as a specific instance of a broader connection between Khovanov- and Heegaard Floer-type homology theories, using a version of Heegaard Floer homology for sutured manifolds developed by Juhász in [7]. In the present work, we prove the naturality of the spectral sequence under certain elementary operations, using a generalization of Juhász’s surface decomposition theorem valid for decomposing surfaces geometrically disjoint from an imbedded framed link.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnq039</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2010-01, Vol.2010 (21), p.4159-4210</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-58508cd69dc15e1d232be56c5375d558ba47e8c00f22b9616949b5ce87f10b213</citedby><cites>FETCH-LOGICAL-c308t-58508cd69dc15e1d232be56c5375d558ba47e8c00f22b9616949b5ce87f10b213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Grigsby, J. Elisenda</creatorcontrib><creatorcontrib>Wehrli, Stephan M.</creatorcontrib><title>On the Naturality of the Spectral Sequence from Khovanov Homology to Heegaard Floer Homology</title><title>International mathematics research notices</title><description>In [18], Ozsváth–Szabó established an algebraic relationship, in the form of a spectral sequence, between the reduced Khovanov homology of (the mirror of) a link and the Heegaard Floer homology of its double-branched cover. This relationship, extended in [19] and [4], was recast, in [5], as a specific instance of a broader connection between Khovanov- and Heegaard Floer-type homology theories, using a version of Heegaard Floer homology for sutured manifolds developed by Juhász in [7]. In the present work, we prove the naturality of the spectral sequence under certain elementary operations, using a generalization of Juhász’s surface decomposition theorem valid for decomposing surfaces geometrically disjoint from an imbedded framed link.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKdX_oHcS10-mia9lOnW4XDgVESEkKanW7VttrQb7t_bOdnVObzvwznwIHRNyS0lMR8Ula8Hvl4THp-gHo2UDAgL5Wm3E8kDGTN1ji6a5osQRqjiPfQ5q3G7BPxk2o03ZdHusMv_kvkKbNtFeA7rDdQWcO5dhR-Xbmtqt8WJq1zpFjvcOpwALIzxGR6VDvyxukRnuSkbuPqfffQ6engZJsF0Np4M76aB5US1gVCCKJtFcWapAJoxzlIQkRVcikwIlZpQgrKE5IylcUSjOIxTYUHJnJKUUd5HN4e71rum8ZDrlS8q43eaEr0Xo_di9EFMRwcHumha-Dmixn_rSHYvdfL-oWXInu8FH-s3_gvpHGdX</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Grigsby, J. Elisenda</creator><creator>Wehrli, Stephan M.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100101</creationdate><title>On the Naturality of the Spectral Sequence from Khovanov Homology to Heegaard Floer Homology</title><author>Grigsby, J. Elisenda ; Wehrli, Stephan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-58508cd69dc15e1d232be56c5375d558ba47e8c00f22b9616949b5ce87f10b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigsby, J. Elisenda</creatorcontrib><creatorcontrib>Wehrli, Stephan M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigsby, J. Elisenda</au><au>Wehrli, Stephan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Naturality of the Spectral Sequence from Khovanov Homology to Heegaard Floer Homology</atitle><jtitle>International mathematics research notices</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>21</issue><spage>4159</spage><epage>4210</epage><pages>4159-4210</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>In [18], Ozsváth–Szabó established an algebraic relationship, in the form of a spectral sequence, between the reduced Khovanov homology of (the mirror of) a link and the Heegaard Floer homology of its double-branched cover. This relationship, extended in [19] and [4], was recast, in [5], as a specific instance of a broader connection between Khovanov- and Heegaard Floer-type homology theories, using a version of Heegaard Floer homology for sutured manifolds developed by Juhász in [7]. In the present work, we prove the naturality of the spectral sequence under certain elementary operations, using a generalization of Juhász’s surface decomposition theorem valid for decomposing surfaces geometrically disjoint from an imbedded framed link.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnq039</doi><tpages>52</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2010-01, Vol.2010 (21), p.4159-4210
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnq039
source Oxford University Press Journals All Titles (1996-Current)
title On the Naturality of the Spectral Sequence from Khovanov Homology to Heegaard Floer Homology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Naturality%20of%20the%20Spectral%20Sequence%20from%20Khovanov%20Homology%20to%20Heegaard%20Floer%20Homology&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Grigsby,%20J.%20Elisenda&rft.date=2010-01-01&rft.volume=2010&rft.issue=21&rft.spage=4159&rft.epage=4210&rft.pages=4159-4210&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnq039&rft_dat=%3Cistex_cross%3Eark_67375_HXZ_742RD53G_V%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true