Gelfand–Zetlin Polytopes and Flag Varieties

I construct a correspondence between the Schubert cycles on the variety of complete flags in ℂn and some faces of the Gelfand–Zetlin polytope associated with the irreducible representation of SLn(ℂ) with a strictly dominant highest weight. The construction is motivated by the geometric presentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2010-01, Vol.2010 (13), p.2512-2531
1. Verfasser: Kiritchenko, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2531
container_issue 13
container_start_page 2512
container_title International mathematics research notices
container_volume 2010
creator Kiritchenko, V.
description I construct a correspondence between the Schubert cycles on the variety of complete flags in ℂn and some faces of the Gelfand–Zetlin polytope associated with the irreducible representation of SLn(ℂ) with a strictly dominant highest weight. The construction is motivated by the geometric presentation of Schubert cells using Demazure modules due to Bernstein–Gelfand–Gelfand [3]. The correspondence between the Schubert cycles and faces is then used to interpret the classical Chevalley formula in Schubert calculus in terms of the Gelfand–Zetlin polytopes. The whole picture resembles the picture for toric varieties and their polytopes.
doi_str_mv 10.1093/imrn/rnp223
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnp223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_HXZ_62HDBSHK_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-892a152b541bd920042dd7f94b88d0b0216b7e9afd2e0cedee622fb56cb33d443</originalsourceid><addsrcrecordid>eNo9j8FKAzEURYMoWKsrf2D2EvvyMjPJLLXajlhQUIt0E5LJGxmdTksyC7vzH_xDv8SWiqt7uRwuHMbOBVwKKOSoWYZuFLo1ojxgA5FrxQFTdbjtoCRXBepjdhLjOwCC0HLA-JTa2nb-5-t7QX3bdMnjqt30qzXFZDsnk9a-JXMbGuobiqfsqLZtpLO_HLKXye3zuOSzh-nd-GrGKwm657pAKzJ0WSqcLxAgRe9VXaROaw8OUOROUWFrjwQVeaIcsXZZXjkpfZrKIbvY_1ZhFWOg2qxDs7RhYwSYnanZmZq96Zbme7qJPX3-ozZ8mFxJlZnydWFyLG-un8p7M5e_3EpYEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gelfand–Zetlin Polytopes and Flag Varieties</title><source>Oxford University Press Journals Current</source><creator>Kiritchenko, V.</creator><creatorcontrib>Kiritchenko, V.</creatorcontrib><description>I construct a correspondence between the Schubert cycles on the variety of complete flags in ℂn and some faces of the Gelfand–Zetlin polytope associated with the irreducible representation of SLn(ℂ) with a strictly dominant highest weight. The construction is motivated by the geometric presentation of Schubert cells using Demazure modules due to Bernstein–Gelfand–Gelfand [3]. The correspondence between the Schubert cycles and faces is then used to interpret the classical Chevalley formula in Schubert calculus in terms of the Gelfand–Zetlin polytopes. The whole picture resembles the picture for toric varieties and their polytopes.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnp223</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2010-01, Vol.2010 (13), p.2512-2531</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-892a152b541bd920042dd7f94b88d0b0216b7e9afd2e0cedee622fb56cb33d443</citedby><cites>FETCH-LOGICAL-c308t-892a152b541bd920042dd7f94b88d0b0216b7e9afd2e0cedee622fb56cb33d443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kiritchenko, V.</creatorcontrib><title>Gelfand–Zetlin Polytopes and Flag Varieties</title><title>International mathematics research notices</title><description>I construct a correspondence between the Schubert cycles on the variety of complete flags in ℂn and some faces of the Gelfand–Zetlin polytope associated with the irreducible representation of SLn(ℂ) with a strictly dominant highest weight. The construction is motivated by the geometric presentation of Schubert cells using Demazure modules due to Bernstein–Gelfand–Gelfand [3]. The correspondence between the Schubert cycles and faces is then used to interpret the classical Chevalley formula in Schubert calculus in terms of the Gelfand–Zetlin polytopes. The whole picture resembles the picture for toric varieties and their polytopes.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9j8FKAzEURYMoWKsrf2D2EvvyMjPJLLXajlhQUIt0E5LJGxmdTksyC7vzH_xDv8SWiqt7uRwuHMbOBVwKKOSoWYZuFLo1ojxgA5FrxQFTdbjtoCRXBepjdhLjOwCC0HLA-JTa2nb-5-t7QX3bdMnjqt30qzXFZDsnk9a-JXMbGuobiqfsqLZtpLO_HLKXye3zuOSzh-nd-GrGKwm657pAKzJ0WSqcLxAgRe9VXaROaw8OUOROUWFrjwQVeaIcsXZZXjkpfZrKIbvY_1ZhFWOg2qxDs7RhYwSYnanZmZq96Zbme7qJPX3-ozZ8mFxJlZnydWFyLG-un8p7M5e_3EpYEg</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Kiritchenko, V.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100101</creationdate><title>Gelfand–Zetlin Polytopes and Flag Varieties</title><author>Kiritchenko, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-892a152b541bd920042dd7f94b88d0b0216b7e9afd2e0cedee622fb56cb33d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiritchenko, V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiritchenko, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gelfand–Zetlin Polytopes and Flag Varieties</atitle><jtitle>International mathematics research notices</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><issue>13</issue><spage>2512</spage><epage>2531</epage><pages>2512-2531</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>I construct a correspondence between the Schubert cycles on the variety of complete flags in ℂn and some faces of the Gelfand–Zetlin polytope associated with the irreducible representation of SLn(ℂ) with a strictly dominant highest weight. The construction is motivated by the geometric presentation of Schubert cells using Demazure modules due to Bernstein–Gelfand–Gelfand [3]. The correspondence between the Schubert cycles and faces is then used to interpret the classical Chevalley formula in Schubert calculus in terms of the Gelfand–Zetlin polytopes. The whole picture resembles the picture for toric varieties and their polytopes.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnp223</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2010-01, Vol.2010 (13), p.2512-2531
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnp223
source Oxford University Press Journals Current
title Gelfand–Zetlin Polytopes and Flag Varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gelfand%E2%80%93Zetlin%20Polytopes%20and%20Flag%20Varieties&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Kiritchenko,%20V.&rft.date=2010-01-01&rft.volume=2010&rft.issue=13&rft.spage=2512&rft.epage=2531&rft.pages=2512-2531&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnp223&rft_dat=%3Cistex_cross%3Eark_67375_HXZ_62HDBSHK_V%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true