Graded Sum Formula for ~ A 1-Soergel Calculus and the Nil-Blob Algebra

We study the representation theory of the Soergel calculus algebra $ {{ \tilde {A}_w^{{\mathbb {C}}}:= \mbox {End}_{ {{\mathcal {D}}}_{(W,S)}} (\underline {w}) $ over $ {\mathbb {C}}$ in type $ \tilde {A}_1$. We generalize the recent isomorphism between the nil-blob algebra $ {{\mathbb {N}\mathbb {B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-04, Vol.2024 (7), p.5923-5962
Hauptverfasser: Hernández Caro, Marcelo, Ryom-Hansen, Steen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5962
container_issue 7
container_start_page 5923
container_title International mathematics research notices
container_volume 2024
creator Hernández Caro, Marcelo
Ryom-Hansen, Steen
description We study the representation theory of the Soergel calculus algebra $ {{ \tilde {A}_w^{{\mathbb {C}}}:= \mbox {End}_{ {{\mathcal {D}}}_{(W,S)}} (\underline {w}) $ over $ {\mathbb {C}}$ in type $ \tilde {A}_1$. We generalize the recent isomorphism between the nil-blob algebra $ {{\mathbb {N}\mathbb {B}}_n}$ and a diagrammatically defined subalgebra $ {A}_w^{{\mathbb {C}}}$ of ${{ \tilde {A}_w^{{\mathbb {C}}}$ to deal with the two-parameter blob algebra. Under this generalization, the two parameters correspond to the two simple roots for $ \tilde {A}_1$. Using this, together with calculations involving the Jones-Wenzl idempotents for the Temperley-Lieb subalgebra of $ {{\mathbb {N}\mathbb {B}}_n}$, we obtain a concrete diagonalization of the matrix of the bilinear form on the cell module $ \Delta _w(v) $ for $ {{ \tilde {A}_w^{{\mathbb {C}}} $. The entries of the diagonalized matrices turn out to be products of roots for $ \tilde {A}_1$. We use this to study Jantzen-type filtrations of $ \Delta _w(v) $ for $ {{ \tilde {A}_w^{{\mathbb {C}}}$. We show that, at an enriched Grothendieck group level, the corresponding sum formula has terms $ \Delta _w(s_{\alpha }v)[ l(s_{\alpha }v)- l(v)] $, where $ [ \cdot ] $ denotes grading shift.
doi_str_mv 10.1093/imrn/rnad287
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnad287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnad287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c107t-1c6021acb403b216214436ab66da15f448d80d18462d61523f75705633cd84cb3</originalsourceid><addsrcrecordid>eNot0LFOwzAYBGALgUQpbDyAHwDT_7cd2x1DRApSBUNhjhzbKUFOg-xmYOHZadVOd9Pp9BFyj_CIsBSLfki7RdpZz42-IDNURjPgUl8eOmjB9JKba3KT8zcABzRiRupVsj54upkGWo9pmKKl3ZjoHy0pss0Y0jZEWtnopjhlanee7r8Cfesje4pjS8u4DW2yt-SqszGHu3POyWf9_FG9sPX76rUq18wdDuwZOgUcrWsliJaj4iilULZVylssOimNN-DRSMW9woKLThcaCiWE80a6VszJw2nXpTHnFLrmJ_WDTb8NQnM0aI4GzdlA_AOsFU6F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graded Sum Formula for ~ A 1-Soergel Calculus and the Nil-Blob Algebra</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hernández Caro, Marcelo ; Ryom-Hansen, Steen</creator><creatorcontrib>Hernández Caro, Marcelo ; Ryom-Hansen, Steen</creatorcontrib><description>We study the representation theory of the Soergel calculus algebra $ {{ \tilde {A}_w^{{\mathbb {C}}}:= \mbox {End}_{ {{\mathcal {D}}}_{(W,S)}} (\underline {w}) $ over $ {\mathbb {C}}$ in type $ \tilde {A}_1$. We generalize the recent isomorphism between the nil-blob algebra $ {{\mathbb {N}\mathbb {B}}_n}$ and a diagrammatically defined subalgebra $ {A}_w^{{\mathbb {C}}}$ of ${{ \tilde {A}_w^{{\mathbb {C}}}$ to deal with the two-parameter blob algebra. Under this generalization, the two parameters correspond to the two simple roots for $ \tilde {A}_1$. Using this, together with calculations involving the Jones-Wenzl idempotents for the Temperley-Lieb subalgebra of $ {{\mathbb {N}\mathbb {B}}_n}$, we obtain a concrete diagonalization of the matrix of the bilinear form on the cell module $ \Delta _w(v) $ for $ {{ \tilde {A}_w^{{\mathbb {C}}} $. The entries of the diagonalized matrices turn out to be products of roots for $ \tilde {A}_1$. We use this to study Jantzen-type filtrations of $ \Delta _w(v) $ for $ {{ \tilde {A}_w^{{\mathbb {C}}}$. We show that, at an enriched Grothendieck group level, the corresponding sum formula has terms $ \Delta _w(s_{\alpha }v)[ l(s_{\alpha }v)- l(v)] $, where $ [ \cdot ] $ denotes grading shift.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnad287</identifier><language>eng</language><ispartof>International mathematics research notices, 2024-04, Vol.2024 (7), p.5923-5962</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c107t-1c6021acb403b216214436ab66da15f448d80d18462d61523f75705633cd84cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hernández Caro, Marcelo</creatorcontrib><creatorcontrib>Ryom-Hansen, Steen</creatorcontrib><title>Graded Sum Formula for ~ A 1-Soergel Calculus and the Nil-Blob Algebra</title><title>International mathematics research notices</title><description>We study the representation theory of the Soergel calculus algebra $ {{ \tilde {A}_w^{{\mathbb {C}}}:= \mbox {End}_{ {{\mathcal {D}}}_{(W,S)}} (\underline {w}) $ over $ {\mathbb {C}}$ in type $ \tilde {A}_1$. We generalize the recent isomorphism between the nil-blob algebra $ {{\mathbb {N}\mathbb {B}}_n}$ and a diagrammatically defined subalgebra $ {A}_w^{{\mathbb {C}}}$ of ${{ \tilde {A}_w^{{\mathbb {C}}}$ to deal with the two-parameter blob algebra. Under this generalization, the two parameters correspond to the two simple roots for $ \tilde {A}_1$. Using this, together with calculations involving the Jones-Wenzl idempotents for the Temperley-Lieb subalgebra of $ {{\mathbb {N}\mathbb {B}}_n}$, we obtain a concrete diagonalization of the matrix of the bilinear form on the cell module $ \Delta _w(v) $ for $ {{ \tilde {A}_w^{{\mathbb {C}}} $. The entries of the diagonalized matrices turn out to be products of roots for $ \tilde {A}_1$. We use this to study Jantzen-type filtrations of $ \Delta _w(v) $ for $ {{ \tilde {A}_w^{{\mathbb {C}}}$. We show that, at an enriched Grothendieck group level, the corresponding sum formula has terms $ \Delta _w(s_{\alpha }v)[ l(s_{\alpha }v)- l(v)] $, where $ [ \cdot ] $ denotes grading shift.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0LFOwzAYBGALgUQpbDyAHwDT_7cd2x1DRApSBUNhjhzbKUFOg-xmYOHZadVOd9Pp9BFyj_CIsBSLfki7RdpZz42-IDNURjPgUl8eOmjB9JKba3KT8zcABzRiRupVsj54upkGWo9pmKKl3ZjoHy0pss0Y0jZEWtnopjhlanee7r8Cfesje4pjS8u4DW2yt-SqszGHu3POyWf9_FG9sPX76rUq18wdDuwZOgUcrWsliJaj4iilULZVylssOimNN-DRSMW9woKLThcaCiWE80a6VszJw2nXpTHnFLrmJ_WDTb8NQnM0aI4GzdlA_AOsFU6F</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Hernández Caro, Marcelo</creator><creator>Ryom-Hansen, Steen</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240408</creationdate><title>Graded Sum Formula for ~ A 1-Soergel Calculus and the Nil-Blob Algebra</title><author>Hernández Caro, Marcelo ; Ryom-Hansen, Steen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c107t-1c6021acb403b216214436ab66da15f448d80d18462d61523f75705633cd84cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández Caro, Marcelo</creatorcontrib><creatorcontrib>Ryom-Hansen, Steen</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández Caro, Marcelo</au><au>Ryom-Hansen, Steen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graded Sum Formula for ~ A 1-Soergel Calculus and the Nil-Blob Algebra</atitle><jtitle>International mathematics research notices</jtitle><date>2024-04-08</date><risdate>2024</risdate><volume>2024</volume><issue>7</issue><spage>5923</spage><epage>5962</epage><pages>5923-5962</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We study the representation theory of the Soergel calculus algebra $ {{ \tilde {A}_w^{{\mathbb {C}}}:= \mbox {End}_{ {{\mathcal {D}}}_{(W,S)}} (\underline {w}) $ over $ {\mathbb {C}}$ in type $ \tilde {A}_1$. We generalize the recent isomorphism between the nil-blob algebra $ {{\mathbb {N}\mathbb {B}}_n}$ and a diagrammatically defined subalgebra $ {A}_w^{{\mathbb {C}}}$ of ${{ \tilde {A}_w^{{\mathbb {C}}}$ to deal with the two-parameter blob algebra. Under this generalization, the two parameters correspond to the two simple roots for $ \tilde {A}_1$. Using this, together with calculations involving the Jones-Wenzl idempotents for the Temperley-Lieb subalgebra of $ {{\mathbb {N}\mathbb {B}}_n}$, we obtain a concrete diagonalization of the matrix of the bilinear form on the cell module $ \Delta _w(v) $ for $ {{ \tilde {A}_w^{{\mathbb {C}}} $. The entries of the diagonalized matrices turn out to be products of roots for $ \tilde {A}_1$. We use this to study Jantzen-type filtrations of $ \Delta _w(v) $ for $ {{ \tilde {A}_w^{{\mathbb {C}}}$. We show that, at an enriched Grothendieck group level, the corresponding sum formula has terms $ \Delta _w(s_{\alpha }v)[ l(s_{\alpha }v)- l(v)] $, where $ [ \cdot ] $ denotes grading shift.</abstract><doi>10.1093/imrn/rnad287</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2024-04, Vol.2024 (7), p.5923-5962
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnad287
source Oxford University Press Journals All Titles (1996-Current)
title Graded Sum Formula for ~ A 1-Soergel Calculus and the Nil-Blob Algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graded%20Sum%20Formula%20for%20~%20A%201-Soergel%20Calculus%20and%20the%20Nil-Blob%20Algebra&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Hern%C3%A1ndez%20Caro,%20Marcelo&rft.date=2024-04-08&rft.volume=2024&rft.issue=7&rft.spage=5923&rft.epage=5962&rft.pages=5923-5962&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnad287&rft_dat=%3Ccrossref%3E10_1093_imrn_rnad287%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true