Conductor-Discriminant Inequality for Hyperelliptic Curves in Odd Residue Characteristic
We prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $K$ with perfect residue field of characteristic not $2$. Specifically, if such a curve is given by $y^{2} = f(x)$ with $f(x) \in \mathcal{O}_{K}[x]$, and if $\mathcal...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-05, Vol.2024 (9), p.7343-7359 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7359 |
---|---|
container_issue | 9 |
container_start_page | 7343 |
container_title | International mathematics research notices |
container_volume | 2024 |
creator | Obus, Andrew Srinivasan, Padmavathi |
description | We prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $K$ with perfect residue field of characteristic not $2$. Specifically, if such a curve is given by $y^{2} = f(x)$ with $f(x) \in \mathcal{O}_{K}[x]$, and if $\mathcal{X}$ is its minimal regular model over $\mathcal{O}_{K}$, then the negative of the Artin conductor of $\mathcal{X}$ (and thus also the number of irreducible components of the special fiber of $\mathcal{X}$) is bounded above by the valuation of $\operatorname{disc}(f)$. There are no restrictions on genus of the curve or on the ramification of the splitting field of $f$. This generalizes earlier work of Ogg, Saito, Liu, and the second author. |
doi_str_mv | 10.1093/imrn/rnad173 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnad173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnad173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-62b13407f0714bde0857ff1b9148c0c6052f74257d93466e19794f6d47c0b4ac3</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMoOKd3_oD8AOPefDRpL6XqNhgMRMG7kuYDI106k1bov7fDXZ1zcXjgPAjdU3ikUPFVOKS4SlFbqvgFWlBZKgJMqMu5g-JEVay8Rjc5fwMwoCVfoM-6j3Y0Q5_Ic8gmhUOIOg54G93PqLswTNj3CW-mo0uu68JxCAbXY_p1GYeI99biN5eDHR2uv3TSZnAp5Hl0i6687rK7O-cSfby-vNcbstuvt_XTjhjGi4FI1lIuQHlQVLTWQVko72lbUVEaMBIK5pVghbIVF1I6WqlKeGmFMtAKbfgSPfxzTepzTs43x_mETlNDoTlZaU5WmrMV_ge2nFg9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conductor-Discriminant Inequality for Hyperelliptic Curves in Odd Residue Characteristic</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Obus, Andrew ; Srinivasan, Padmavathi</creator><creatorcontrib>Obus, Andrew ; Srinivasan, Padmavathi</creatorcontrib><description>We prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $K$ with perfect residue field of characteristic not $2$. Specifically, if such a curve is given by $y^{2} = f(x)$ with $f(x) \in \mathcal{O}_{K}[x]$, and if $\mathcal{X}$ is its minimal regular model over $\mathcal{O}_{K}$, then the negative of the Artin conductor of $\mathcal{X}$ (and thus also the number of irreducible components of the special fiber of $\mathcal{X}$) is bounded above by the valuation of $\operatorname{disc}(f)$. There are no restrictions on genus of the curve or on the ramification of the splitting field of $f$. This generalizes earlier work of Ogg, Saito, Liu, and the second author.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnad173</identifier><language>eng</language><ispartof>International mathematics research notices, 2024-05, Vol.2024 (9), p.7343-7359</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c235t-62b13407f0714bde0857ff1b9148c0c6052f74257d93466e19794f6d47c0b4ac3</citedby><cites>FETCH-LOGICAL-c235t-62b13407f0714bde0857ff1b9148c0c6052f74257d93466e19794f6d47c0b4ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Obus, Andrew</creatorcontrib><creatorcontrib>Srinivasan, Padmavathi</creatorcontrib><title>Conductor-Discriminant Inequality for Hyperelliptic Curves in Odd Residue Characteristic</title><title>International mathematics research notices</title><description>We prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $K$ with perfect residue field of characteristic not $2$. Specifically, if such a curve is given by $y^{2} = f(x)$ with $f(x) \in \mathcal{O}_{K}[x]$, and if $\mathcal{X}$ is its minimal regular model over $\mathcal{O}_{K}$, then the negative of the Artin conductor of $\mathcal{X}$ (and thus also the number of irreducible components of the special fiber of $\mathcal{X}$) is bounded above by the valuation of $\operatorname{disc}(f)$. There are no restrictions on genus of the curve or on the ramification of the splitting field of $f$. This generalizes earlier work of Ogg, Saito, Liu, and the second author.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAYhYMoOKd3_oD8AOPefDRpL6XqNhgMRMG7kuYDI106k1bov7fDXZ1zcXjgPAjdU3ikUPFVOKS4SlFbqvgFWlBZKgJMqMu5g-JEVay8Rjc5fwMwoCVfoM-6j3Y0Q5_Ic8gmhUOIOg54G93PqLswTNj3CW-mo0uu68JxCAbXY_p1GYeI99biN5eDHR2uv3TSZnAp5Hl0i6687rK7O-cSfby-vNcbstuvt_XTjhjGi4FI1lIuQHlQVLTWQVko72lbUVEaMBIK5pVghbIVF1I6WqlKeGmFMtAKbfgSPfxzTepzTs43x_mETlNDoTlZaU5WmrMV_ge2nFg9</recordid><startdate>20240507</startdate><enddate>20240507</enddate><creator>Obus, Andrew</creator><creator>Srinivasan, Padmavathi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240507</creationdate><title>Conductor-Discriminant Inequality for Hyperelliptic Curves in Odd Residue Characteristic</title><author>Obus, Andrew ; Srinivasan, Padmavathi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-62b13407f0714bde0857ff1b9148c0c6052f74257d93466e19794f6d47c0b4ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obus, Andrew</creatorcontrib><creatorcontrib>Srinivasan, Padmavathi</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obus, Andrew</au><au>Srinivasan, Padmavathi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductor-Discriminant Inequality for Hyperelliptic Curves in Odd Residue Characteristic</atitle><jtitle>International mathematics research notices</jtitle><date>2024-05-07</date><risdate>2024</risdate><volume>2024</volume><issue>9</issue><spage>7343</spage><epage>7359</epage><pages>7343-7359</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $K$ with perfect residue field of characteristic not $2$. Specifically, if such a curve is given by $y^{2} = f(x)$ with $f(x) \in \mathcal{O}_{K}[x]$, and if $\mathcal{X}$ is its minimal regular model over $\mathcal{O}_{K}$, then the negative of the Artin conductor of $\mathcal{X}$ (and thus also the number of irreducible components of the special fiber of $\mathcal{X}$) is bounded above by the valuation of $\operatorname{disc}(f)$. There are no restrictions on genus of the curve or on the ramification of the splitting field of $f$. This generalizes earlier work of Ogg, Saito, Liu, and the second author.</abstract><doi>10.1093/imrn/rnad173</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2024-05, Vol.2024 (9), p.7343-7359 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnad173 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Conductor-Discriminant Inequality for Hyperelliptic Curves in Odd Residue Characteristic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductor-Discriminant%20Inequality%20for%20Hyperelliptic%20Curves%20in%20Odd%20Residue%20Characteristic&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Obus,%20Andrew&rft.date=2024-05-07&rft.volume=2024&rft.issue=9&rft.spage=7343&rft.epage=7359&rft.pages=7343-7359&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnad173&rft_dat=%3Ccrossref%3E10_1093_imrn_rnad173%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |